

Software Visualization

Stephan Diehl

Software
Visualization
Visualizing the Structure, Behaviour,
and Evolution of Software

With 124 Figures, including 75 in Colour, and 5 Tables

123

Author

Stephan Diehl

Universität Trier
Fachbereich Informatik
54286 Trier, Germany
diehl@uni-trier.de

Library of Congress Control Number: 2007923067

ACM Computing Classification (1998): D.2, I.3.8, J.6

ISBN 978-3-540-46504-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant pro-
tective laws and regulations and therefore free for general use.

Typeset by the author
Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig
Cover design: KünkelLopka Werbeagentur, Heidelberg

Printed on acid-free paper 45/3100/YL - 5 4 3 2 1 0

To Christine, Luca, and Jean-Luc

Preface

Software systems are designed, implemented, tested, debugged, analyzed, and
maintained by many changing developers. All these tasks can be facilitated
by visualization.

In this book we give an overview of the various areas of software visu-
alization, the art and science of generating visual representations of various
aspects of software and its development process.

In contrast to visual programming and diagramming for software design,
software visualization is not so much concerned with the construction, but
with the analysis of programs and their development process.

So far, there exist only anthologies and proceedings about software visu-
alization. This book is the first textbook on software visualization. Although
written mostly for graduate students, the book is also a valuable resource for
researchers as it provides a broad and systematic overview of the area with
many pointers to literature and systems for further study.

As the field of software visualization is growing fast, the book is not meant
to be comprehensive, but we have attempted to select seminal work as well
as promising new approaches to illustrate some emerging principles in the
field. Each chapter is followed by a list of exercises including both pen&paper
exercises, as well as programming tasks.

This book is aimed at graduate students and researchers who are new to
the field of software visualization. The book is meant to be read from end to
end, though some readers may want to skip some of the more formal sections.
Ideally, after reading the book, the reader will be able to

• identify recurring concepts in various areas of software visualization;
• understand the purpose of various visualization techniques;
• appreciate the use of visualization in software engineering.

VIII Preface

We assume that the reader will have some programming experience, preferably
in Java, and some basic knowledge of software engineering terminology. No
prior knowledge of software visualization is required.

Additional material related to this book, including examples and program
code for exercises, can be found at the following Web address:

http://www.eposoft.org/svbook

March 2007 Stephan Diehl

Contents

1 Introduction . 1
1.1 What Is Software Visualization? . 3
1.2 Organization of This Book . 4
1.3 Software Visualization and Visual Programming 6
1.4 Examples of Software Visualization Tools 7

1.4.1 StackAnalyzer: Static Program Visualization 7
1.4.2 X-Tango: Algorithm Animation . 8
1.4.3 SeeSoft: Software Evolution . 9

1.5 Taxonomies and Surveys . 9
1.6 The Visualization Pipeline . 12
Exercises . 13

2 Visualization Basics . 15
2.1 Perception and Cognition . 15

2.1.1 Visual Memory . 16
2.1.2 The Human Eye . 16
2.1.3 Light, Color, and Color Perception 17
2.1.4 Pattern Perception . 17
2.1.5 Preattentive Perception . 18
2.1.6 Motion Perception . 19
2.1.7 Implications for the Design of Visualizations 20

2.2 Graphical Representation . 21
2.2.1 Graphical Primitives and Properties 21
2.2.2 Text . 22
2.2.3 Diagrams . 22
2.2.4 3D Graphics and Rendering . 22

2.3 General Information Visualization Techniques 25
2.3.1 Visualization of Textual Data . 25
2.3.2 Graph Drawing . 26

X Contents

2.3.3 Visualization of Hierarchies . 29
2.4 Visual Metaphors . 31
2.5 Summary . 32
Exercises . 32

3 Static Program Visualization . 35
3.1 Textual Representations . 35

3.1.1 Pretty Printing . 35
3.1.2 Program as Publication . 36

3.2 Diagrammatic Representations . 38
3.2.1 Jackson Diagrams . 38
3.2.2 Control-Flow Graphs . 40
3.2.3 Nassi–Shneiderman Diagrams . 45
3.2.4 Control-Structure Diagrams . 47

3.3 Visualizing the Results of Program Analyses 48
3.3.1 Static Analysis . 48
3.3.2 Control-Flow Analysis . 49
3.3.3 Data-Flow Analysis . 50
3.3.4 Examples of Visualization of Analysis Results 53

3.4 Visualizing Software Architectures . 56
3.4.1 Some Familiar Architectures . 57
3.4.2 The Unified Modeling Language (UML) 58
3.4.3 Software Metrics . 60
3.4.4 Software Visualization and Reverse Engineering 63
3.4.5 3D and Software Architecture . 71

3.5 Summary . 74
Exercises . 74

4 Dynamic Program Visualization . 79
4.1 Dynamic Data Acquisition . 79

4.1.1 How Is Runtime Data Collected? . 80
4.1.2 What Runtime Data Is Collected? 80
4.1.3 Dynamic Data Acquisition in Java 81

4.2 Visualizing Dynamics . 82
4.2.1 Fundamental Techniques . 82
4.2.2 A First Example . 83

4.3 Dynamic Architecture Visualization . 85
4.3.1 Augmenting Static Diagrams . 85
4.3.2 Generating Behavior Diagrams . 86

4.4 Algorithm Animation . 87
4.4.1 What Is It About? . 87
4.4.2 Why Do People Animate Algorithms? 88
4.4.3 A Short History of Algorithm Animation 89

Contents XI

4.4.4 Some Animations Produced by X-Tango 90
4.4.5 3D for Algorithm Animation . 95
4.4.6 Architectures of Algorithm Animation Tools 97
4.4.7 Abstract Algorithm Animation . 99
4.4.8 Learning Scenarios . 102
4.4.9 A Brief Introduction to SAMBA . 105

4.5 Visual Debugging – Inspecting the Program State 108
4.5.1 Interactive Visual Unfolding . 109
4.5.2 Traversal-Based Visualization . 110
4.5.3 Memory Graphs and Memory Slices 111
4.5.4 Reference Patterns . 114

4.6 Visual Testing – Detecting Possibly Buggy Program Code 115
4.6.1 Dynamic Program Slices . 115
4.6.2 Visualizing Test Case Results . 117
4.6.3 Web Service Flow Patterns . 122

4.7 Summary . 124
Exercises . 125

5 Visualizing the Evolution of Software Systems 129
5.1 Visualizing Changes in Software Metrics . 130

5.1.1 SeeSoft . 131
5.1.2 Revision Towers . 135
5.1.3 The Evolution Matrix . 135

5.2 Visualizing Software Archives . 136
5.3 Visualizing Structural Change . 138
5.4 Visualizing Evolutionary Coupling . 140
5.5 Visual Data Mining . 144
5.6 Summary . 146
Exercises . 147

6 Evaluation . 149
6.1 Claims About Visualization Techniques . 149
6.2 Quantitative Evaluation . 149
6.3 Qualitative Evaluation . 150

6.3.1 Evaluation Based on Gestalt Theory 151
6.3.2 Task-Oriented Evaluation . 152
6.3.3 The Cognitive-Dimensions Framework 152

6.4 Educational Evaluation . 154
6.5 Some Interesting Empirical Results . 157
6.6 Summary . 159
Exercises . 160

XII Contents

7 Conclusions . 161
7.1 The Visualization Pipeline – Revisited . 161
7.2 Further Reading and Resources . 163
7.3 The Future of Software Visualization . 165

References . 169

Index . 185

1

Introduction

Nobody has ever directly seen an atom, but most of us will think of an atom as
a core surrounded by small spheres or orbital clouds. The important role that
visualization plays in human reasoning in general and in scientific progress in
particular has been emphasized by philosophers throughout the centuries.

. . . thought is impossible without an image.
(Aristotle, 350 BC)

Imagination or visualization, and in particular the use of diagrams,
has a crucial part to play in scientific research.

(René Descartes, 1637)

The understanding can intuit nothing, the senses can think nothing.
Only through their union can knowledge arise.

(Immanuel Kant, 1781)

Today computers have become an important tool for creating visualiza-
tions and helping the user to better understand complex phenomena. As a
consequence visualization has become a discipline of computer science. So in
the rest of this book, we shall use the term for this discipline, rather than
for the cognitive activity of forming mental images. Gershon [Ger94] defines
visualization as follows:

Visualization is more than a method of computing. Visualization is the
process of transforming information into a visual form, enabling users
to observe the information. The resulting visual display enables the
scientist or engineer to perceive visually features which are hidden in
the data but nevertheless are needed for data exploration and analysis.

Visualization plays a major role in the use of computers to support hu-
man reasoning, a field that was named “intelligence amplification”, or IA for
short [Jr.96], in contrast to “artificial intelligence”, or AI for short, where the
goal is that the computer itself becomes intelligent.

2 1 Introduction

Visualization is heavily used in mechanical engineering, chemistry, physics,
and medicine. Computer scientists have developed sophisticated systems to
produce visualizations for these disciplines. Astonishingly enough, computer
scientists have only made little use of visualization as a tool for designing, im-
plementing and maintaining software (see Fig. 1.1). Even worse, many consider
themselves as theoreticians and disregard visualization – an etymologically
wrong dichotomy.1 Programmers tend to adapt to the level of representation
provided by the computer, instead of adapting the computers representations
to their perceptive abilities.

Fig. 1.1. No visualization required

Despite all of its formal and cryptic notation, the terminology of computer
science is rich in metaphors. The goal of such metaphors is to evoke mental
images to better memorize concepts and to exploit analogies to better under-
stand structures or functions. Computer scientists use the terms “automata”
and “machines” for mathematical models of computation. The terms “tapes”,
“trees”, “leaves”, “queues”, “files”, “folders”, and “archives” are used to de-
note data structures. For example, a Turing machine is a mathematical model
composed of sets, functions, and/or relations. The machine analogy lets us

1 The word “theory” comes form the Greek word theorein, which means “to view”.
The early Pythagoreans supported their theorems not by proofs but by contem-
plation, i.e. by drawing sketches in sand.

1.1 What Is Software Visualization? 3

transport aspects from the physical world to the mathematical world and thus
helps to better understand the mathematical model. We might even think of
gear wheels and how one wheel drives the others, once we start to turn one
of them. It has often been noted that software is inherently intangible and
invisible. The goal of software visualization is not to produce neat computer
images, but computer images which evoke mental images for comprehend-
ing software better. Finding new metaphors thus will not just produce better
visualizations, but it will also improve the way we talk about systems.

1.1 What Is Software Visualization?

So far, we have talked about visualization and its importance in human rea-
soning, in particular for science. Today there are two major disciplines of
visualization: scientific visualization processes physical data, whereas infor-
mation visualization processes abstract data.2 As algorithms are a kind of
information, we consider software visualization part of information visualiza-
tion. In the following chapters we shall look at the use of visualization in the
context of software development to foster understanding and insight. Many
authors define software visualization as the visualization of algorithms and
programs (a narrow definition).

This definition excludes a lot of uses of visualization techniques in com-
puter science and has also hindered synergies in the past. In this text we define
software visualization as the visualization of artifacts related to software and
its development process (a wide definition). In addition to the program code,
these artifacts include requirements and design documentation, changes to
the source code, and bug reports, for example. In fact, researchers in software
visualization develop and investigate methods and uses of computer graphical
representations of various aspects of software, for example its static struc-
ture, its concrete and abstract execution, and its evolution. In short, they are
concerned with visualizing the structure, behavior, and evolution of software.

Structure refers to the static parts and relations of the system, i.e. those
which can be computed or inferred without running the program. This
includes the program code and data structures, the static call graph, and
the organization of the program into modules.

Behavior refers to the execution of the program with real and abstract3 data.
The execution can be seen as a sequence of program states, where a pro-
gram state contains both the current code and the data of the program.
Depending on the programming language, the execution can be viewed
on a higher level of abstraction as functions calling other functions, or
objects communicating with other objects.

2 There have been several attempts in the literature [Chi00] to make the distinction
more clear, but there always remains an overlap of the two disciplines.

3 see Sect. 4.4.7.

4 1 Introduction

Evolution refers to the development process of the software system and, in
particular, emphasizes the fact that program code is changed over time
to extend the functionality of the system or simply to remove bugs.

Thus, software visualization is the art and science of generating visual
representations of various aspects of software and its development process. As
Tilley and Smith put it, “Program understanding is the (ill-defined) deductive
process of acquiring knowledge about a software artifact through analysis,
abstraction, and generalization.” [TS96]. The goal of software visualization is
to help to comprehend software systems and to improve the productivity of
the software development process.

1.2 Organization of This Book

In the following chapters we shall learn what kinds of information about soft-
ware exist, how they are computed, what visual representations are appropri-
ate for them, and how they are computed. Our selection of topics, systems
and approaches is in no way complete, but we have tried to select seminal
work, as well as newer approaches that we have found most promising.

As shown in Fig. 1.2, the book is organized around the three aspects of
software discussed in Chaps. 3, 4 and 5: structure, behavior and evolution.
Each of these three chapters discusses the visualization of one of these aspects
at various levels of abstraction, from the program code level to the architecture
level.

In Chap. 1 we discuss two definitions of software visualization and look
at some initial examples. We also introduce the visualization pipeline, which
consists of the various phases of the visualization process.

Chapter 2 presents background information about visual perception and
cognition, and also introduces general information visualization techniques for
textual, hierarchical and graph-based information.

In Chap. 3 we look at the visualization of static program properties, i.e.
what textual and graphical means exist to display programs, and the results
of program analyses. Next, we discuss the visualization of software architec-
tures. We briefly look at the unified modeling language (UML) and alternative
representations, followed by a look at software metrics. Then we take a closer
look at tools that allow one to extract, draw and explore the architecture of
a system.

In Chap. 4 we first discuss the general aspects of dynamic program visu-
alization, then we briefly look at the dynamic visualization of software archi-
tectures. Then, algorithm animation is covered in more detail because most of
the work on dynamic program visualization is related to algorithm animation.
Finally, various visual debugging and testing techniques are presented, which
can help the programmer find errors in programs. These techniques can be
divided roughly into those showing the program memory and those showing
the program code.

1.2 Organization of This Book 5

Chapter 1

Introduction

Definition

of

Software

Visualization

Examples
Taxonomies

and Surveys

Visualization

Pipeline

Chapter 2

Visualization Basics

Perception

and

Cognition

Graphical

Representations

Information

Visualization

Techniques

Chapter 3

Static Program Visualization

Textual

and

Diagrammatic

Representations

Visualizing

Results of

Program

Analyses

Visualizing

Software

Architectures

Chapter 6

Evaluation

Quantitative

Evaluation

Qualitative

Evaluation

Educational

Evaluation

Some

Interesting

Empirical

Results

Chapter 7

Conclusions

The

Visualization

Pipeline

(Revisited)

Further

Reading

and

Resources

The Future

of

Software

Visualization

Chapter 4

Dynamic Program Visualization

Dynamic Data

Aqcuisition

and

Visualizing

Dynamics

Dynamic

Architecture

Visualization

Algorithm

Animation

Visual

Debugging

and

Testing

Applications

Chapter 5

Visualizing the Evolution of Software Systems

Structure

of

Software

Archives

Structural

Change

Evolutionary

Coupling

Changes

in

Software

Metrics

Visual

Data

Mining

Structure

Behavior

Evolution

Chapter 1

Introduction

Definition

of

Software

Visualization

Examples
Taxonomies

and Surveys

Visualization

Pipeline

Chapter 1

Introduction

Definition

of

Software

Visualization

Examples
Taxonomies

and Surveys

Visualization

Pipeline

Chapter 2

Visualization Basics

Perception

and

Cognition

Graphical

Representations

Information

Visualization

Techniques

Chapter 2

Visualization Basics

Perception

and

Cognition

Graphical

Representations

Information

Visualization

Techniques

Chapter 3

Static Program Visualization

Textual

and

Diagrammatic

Representations

Visualizing

Results of

Program

Analyses

Visualizing

Software

Architectures

Chapter 3

Static Program Visualization

Textual

and

Diagrammatic

Representations

Visualizing

Results of

Program

Analyses

Visualizing

Software

Architectures

Chapter 6

Evaluation

Quantitative

Evaluation

Qualitative

Evaluation

Educational

Evaluation

Some

Interesting

Empirical

Results

Chapter 6

Evaluation

Quantitative

Evaluation

Qualitative

Evaluation

Educational

Evaluation

Some

Interesting

Empirical

Results

Chapter 7

Conclusions

The

Visualization

Pipeline

(Revisited)

Further

Reading

and

Resources

The Future

of

Software

Visualization

Chapter 7

Conclusions

The

Visualization

Pipeline

(Revisited)

Further

Reading

and

Resources

The Future

of

Software

Visualization

Chapter 4

Dynamic Program Visualization

Dynamic Data

Aqcuisition

and

Visualizing

Dynamics

Dynamic

Architecture

Visualization

Algorithm

Animation

Visual

Debugging

and

Testing

Applications

Chapter 4

Dynamic Program Visualization

Dynamic Data

Aqcuisition

and

Visualizing

Dynamics

Dynamic

Architecture

Visualization

Algorithm

Animation

Visual

Debugging

and

Testing

Applications

Chapter 5

Visualizing the Evolution of Software Systems

Structure

of

Software

Archives

Structural

Change

Evolutionary

Coupling

Changes

in

Software

Metrics

Visual

Data

Mining

Chapter 5

Visualizing the Evolution of Software Systems

Structure

of

Software

Archives

Structural

Change

Evolutionary

Coupling

Changes

in

Software

Metrics

Visual

Data

Mining

Structure

Behavior

Evolution

Fig. 1.2. Organization of this book

Chapter 5 covers the visualization of software evolution. The techniques
discussed allow a person to graphically represent the development history of a
software system in order to explore changes of software metrics and structure,
as well as the changes of dependencies of software artifacts over time.

Chapter 6 provides background information on how to evaluate software
visualization tools, then briefly presents some interesting results of empir-
ical studies related to software visualization. We look at quantitative and
qualitative evaluation methods, and discuss some empirical results related to
software visualization. In particular, we emphasize qualitative methods that
can be applied during the design of a system.

6 1 Introduction

Chapter 7 summarizes the various approaches discussed in the book by
looking at the visualization pipeline again.

1.3 Software Visualization and Visual Programming

In classical programming languages, programs are represented as text, and
the meaning results from the linear order of lexical elements. Visual programs
consist of graphical and often also textual elements. The meaning of the pro-
grams depends on the spatial placement of and the connection between these
elements.

In accordance with various programming paradigms, there are control-
flow, data-flow, functional, object-oriented, rule-based, form-based, and hy-
brid (multiparadigm) visual programming languages. Many visual program-
ming languages just allow the user more or less to visually build the abstract
syntax tree of a textual program.4

Software

Visualization

A
n
a
ly

s
is

VisualizationVisualization

A
n
a
ly

s
is

Visual Program

G
e

n
e

ra
ti
o

n

Visual

Programming

Visual Program

G
e

n
e

ra
ti
o

n

Visual

Programming

Software

Visualization

Fig. 1.3. Visual programming versus software visualization

As shown in Fig. 1.3, visual programming and software visualization com-
plement each other. Software visualization generates visualizations from spec-
ifications of software systems, while visual programming generates software
systems from visual specifications. Combining the two approaches allows
round-trip visualization, for example by producing a visual presentation from
the source code of a system, changing this visual presentation, and generating
a new system.

4 There are also integrated development environments for textual programming
languages that have been called “visual” for marketing reasons.

1.4 Examples of Software Visualization Tools 7

1.4 Examples of Software Visualization Tools

To give the reader a first impression of how visualization techniques can help
the software engineer, we shall briefly look at three examples of software visu-
alization tools drawn from different areas: program development, education,
and software evolution.

Fig. 1.4. Stack usage

1.4.1 StackAnalyzer: Static Program Visualization

The first example shows how visualization can be used to support program-
mers. The program analysis tool StackAnalyzer produces visualizations of
control-flow graphs of embedded applications [EB02, Ang]. In these graphs,

8 1 Introduction

the results of a static program analysis are shown (see Fig. 1.4). For each
instruction and each function, the analysis computes the stack usage – both
of the user stack and the system stack. This information can for example be
used to prevent runtime errors due to stack overflow. In Fig. 1.4, each in-
struction and each code block is annotated with stack height differences. The
annotation is colored red if the difference exceeds a certain limit.

Fig. 1.5. X-Tango animation of the quicksort algorithm

1.4.2 X-Tango: Algorithm Animation

Dynamic visualizations are widely used as learning aids in computer science. In
Fig. 1.5, a snapshot of an animation of the quicksort algorithm is shown. The
animation was produced with the X-Tango algorithm animation tool [Sta90a].
The elements to be sorted are shown as vertical bars, nested recursive calls
are indicated by the boxes around some of the bars, and the current pivot
element, i.e. the element where the list is split, is colored green (black in the
grayscale image). The elements to the left of the pivot element are smaller
than or equal to the pivot element, those to the right are greater than the
pivot element.

1.5 Taxonomies and Surveys 9

Fig. 1.6. Visualizing the age of program code changes (c©1996 IEEE)

1.4.3 SeeSoft: Software Evolution

Project managers of large software projects need tools to get a quick overview
of the state of the whole system, and to find trends in the evolution of the sys-
tem. SeeSoft was developed at AT&T Bell Laboratories to visualize changes
and metrics related to evolving large (several million lines of code), complex
software systems [ESJ92, BE95, BE96]. As shown in Fig. 1.6, files are repre-
sented by rectangles. Within each rectangle, colored pixels or lines represent
lines of the source code. In this example, the color indicates the age of the
last modification. Blue (cold) is used for lines which have not been changed
for a long time, whereas red (hot) is used for recently changed lines.

1.5 Taxonomies and Surveys

Several researchers have proposed taxonomies to classify software visualization
research and tools. In this section we briefly review some of these taxonomies,
because they provide various ways to look at and structure software visual-
ization research. Then we discuss the results of three surveys: one about the

10 1 Introduction

amount of published research work and two about the importance of visual-
ization for software engineers.

Myers introduced a taxonomy for program visualization [Mye90] which
identifies six regions arranged in a 2 × 3 matrix as shown in Fig. 1.7. He
distinguishes data, code, and algorithm visualization, where algorithm visu-
alizations represent algorithms at a higher level of abstraction than program
code.

Static Dynamic

Data

Code

Algorithm

Fig. 1.7. Taxonomy introduced by Myers

Three years later, Price et al. suggested a more hierarchical taxonomy of
software visualization [PBS93]. These authors distinguish program visualiza-
tion, which consists of code and data visualization, from the more abstract
algorithm animation. In addition, they introduced a number of aspects which
could be used to classify software visualization tools:

Scope: What is the range of programs used as inputs for the visualization?
Content: What kind of information about the software is visualized?
Form: What are characteristics of the output of the system (e.g. the medium)?
Method: How is the visualization specified?
Interaction: How does the user control the system?
Effectiveness: How well does the system convey information to the user?

At about the same time, Cox and Roman used a very similar set of aspects
to classify some existing software visualization tools [CR93]: scope (code, data
state, control state, and behavior) abstraction, specification method, interface,
and presentation.

In an attempt to identify open research questions in software visualiza-
tion, the current author did a literature survey [Die02a] and classified re-
search papers into a 4 × 4 matrix, shown in Fig. 1.8. The two dimensions of
the matrix are the classical abstraction layers of software systems (hardware,
virtual/abstract machine, program, and system) and the static and dynamic

1.5 Taxonomies and Surveys 11

phenomena of these layers. The map is incomplete in the sense that one could
add additional layers (e.g. operating system) or structures (e.g. project struc-
ture). In the matrix, shades of gray indicate how much published research
exists in the corresponding areas of software visualization. The survey gives
us a rough orientation in relation to the research activity in these areas.

Evolution of
Static Structure

Abstract
Execution

Concrete

Execution

Static
Structure

Real

Machines

Abstract

Machines

Algorithms/

Programs

Systems

Evolution of
Static Structure

Abstract
Execution

Concrete

Execution

Static
Structure

Real

Machines

Abstract

Machines

Algorithms/

Programs

Systems

more than 100 more than 10 up to 10

Fig. 1.8. Literature survey

In a recent survey [Kos02] based on questionnaires filled in by 111 re-
searchers in software maintenance, reengineering, and reverse engineering,
Rainer Koschke reported that 40% found software visualization absolutely
necessary for their work and that another 42% found it important but not
critical. Thus, according to this survey, for 82% of the participating software
engineers, software visualization is important.

In another survey [BK01], with 107 participants mostly from industry,
Bassil and Keller found the following reasons why practitioners apply soft-
ware visualization. In order of decreasing importance the benefits of software
visualization tools were:

• savings in time and money;
• better comprehension of software;
• increase in productivity and quality;
• management of complexity;
• to find errors.

When the participants were asked about the problems of current software
visualization tools that need to be solved, the integration of software visual-
ization tools into other (third-party) tools, and improved import and export
of data and visualizations ranked highest.

12 1 Introduction

Fig. 1.9. The visualization pipeline

1.6 The Visualization Pipeline

The creation of computer images is just the last step in the visualization
pipeline. As shown in Fig. 1.9, information produced by one stage is used as
input by the next stage.

Data acquisition: There are various sources of information about a software
system, including its source code, its design, user documentation, state
changes during its execution, test results, and mailing lists. The methods
used to extract and gather relevant data from these sources are as different
as the sources are.

Analysis: Typically, the amount of information is too much to be immediately
presented to the user. Various kinds of analysis, such as filtering, static
program analysis, or statistical methods, can be used to reduce the amount
of data and to focus on the important parts.

Visualization: The resulting data is mapped onto a visual model, i.e. trans-
formed into geometrical and graphical information, and then rendered
onto the screen or some other kind of medium as a single image or a series
of images.

In interactive visualizations, the user can control the previous steps of the
pipeline on the basis of the graphical output produced earlier. This method
of interaction is sometimes called computational or visual steering [JPH+99,
MvWvL99].

In this book, we describe software visualization tools by the tasks they
support and the techniques used at the various stages of the visualization
pipeline.

Exercises 13

Exercises

Exercise 1: Give examples of visual metaphors used in computer science ter-
minology that have not yet been mentioned in the book.

Exercise 2: What visualization tools do you know that are used in the engi-
neering, natural, medical or social sciences? What visual metaphors are
used? Can you imagine ways to apply some of these tools in software
engineering?

Exercise 3: Consider the visualization tools of the previous exercise. Do they
also use a visualization pipeline similar to the one that we discussed in
Sect. 1.6? If so, can you describe how they implement the three stages?

2

Visualization Basics

The goal of visualization is to convey information through the human visual
system into the human brain by drawing images on the computer screen.
Hence, visualization involves humans and machines. Visualizations that ignore
technical or cognitive idiosyncrasies are doomed to failure.

In this chapter we briefly present some basic physiological, psychological,
and technical knowledge about visualization.

More information on visualization in general and on information visual-
ization in particular can be found in various related books [CMS99, War00,
Spe01, Che04].

2.1 Perception and Cognition

Nihil est in intellectu quod non erat in sensu.1

[Aristotle, 384–322 B.C.]

Perception is the processing of sensory information and thus part of human
cognition, which also includes awareness, reasoning, and learning. 75% of all
information from the real world is visually perceived; only 13% is perceived
through the auditory sense and the remaining 12% through other senses.

According to Nobel Prize winner Roger W. Sperry, the human brain con-
sists of two processing units, each located in one of its hemispheres [Spe68].
While the “left brain” does the verbal, analytical, rational, temporal, and se-
quential reasoning, the reasoning of the “right brain” is nonverbal, synthetic,
intuitive, nontemporal, and parallel. Visualization helps to exploit the mind’s
capacity by integrating both hemispheres. Using both verbal and nonverbal
representations for the same kind of information is often referred to as the
dual-coding theory [Pai90].

1 “Nothing exists in the mind, that has not been before in the senses.”

16 2 Visualization Basics

2.1.1 Visual Memory

In particular, visual memory turns out to be astonishingly good. Shep-
ard [She67] showed 600 very different kinds of pictures and sentences to test
persons and later asked them to recognize those pictures and sentences which
they had seen before. For the pictures, the error rate was only 1.5%, com-
pared with 11.8% for sentences. Standing [Sta73] did a similar experiment
with 10 000 pictures and found an error rate of 17%. As a matter of fact,
many memorization techniques, also called mnemonics, exploit visual mem-
ory by internal visualization.

While our visual memory can store a vast number of pictures, it seems to
store only the gist of them and thus we seem to be blind to small changes in
an image [Wol98, ROC97].

2.1.2 The Human Eye

Figure 2.1 shows a schematic drawing of the human eye. Light falls through
the lens onto the retina. On the surface of the retina there are two kinds of
receptors: about 6 million cones for color vision and 100 million rods for black-
and-white vision. The receptors are not evenly distributed. At the intersection
of the optic axis and the retina, the density of cones is very high and there
are only few rods. Consequently, this is exactly the point with the best vision
(the fovea centralis) with respect to both resolution and color vision. In the
periphery of the fovea, the density of cones is much smaller than that of rods
and thus this area allows only black-and-white vision. In general, the density
of receptors decreases with distance from the optic axis.

Optic Axis

Vitreous Body

Optic Nerve

Lens

Iris

Pupil

Retina

Blind Spot

Fovea

Density of Receptors

Cones

Rods

low high

Fig. 2.1. The human eye and the distribution of receptors

Many people are not aware of the blind spot in their eyes. This spot is
caused by the optic nerve connecting to the eye. With the diagram shown in
Fig. 2.2, you can experience your own blind spot.

2.1 Perception and Cognition 17

1 2 3 4 51 2 3 4 5
Fig. 2.2. Blind spot: close your right eye and focus with your left eye on each of the
numbers. Depending on the distance from your eyes, one of the dots will disappear

2.1.3 Light, Color, and Color Perception

Light is a kind of electromagnetic radiation. More precisely, radiation within
a narrow frequency band. The speed of light c (about 300 000 km/s) is a
fundamental physical constant. Because of the physical law c = λf , light can
be characterized unambiguously by its wavelength λ or by its frequency f .
The wavelength is usually measured in nanometers: 1 nm = 10−9 m. Visible
light ranges from 700 nm (red) to 400 nm (violet) and is actually a mixture
or, more precisely, a superposition of light waves of different wavelengths and
intensities.

Color is the human perception of light. The hue of a color is related to its
dominant wavelength, whereas brightness is related to the intensity or ampli-
tude of the wave. Owing to the physiology of the retina, different mixtures of
light can lead to the same color perception.

There are three kinds of cones in the human eye, which are sensitive to
magenta, green, and yellow-to-red. Each cone thus reacts to an interval of
different wavelengths, and these intervals overlap. For example, blue light
stimulates the green receptors most, but the other receptors will also react.
The human brain combines the signals from all these receptors and produces
an impression of color. Different combinations of stimulation of the three
kinds of receptors form the human color space. Thus the color we perceive is
actually a product of our brain and we have to distinguish perceived colors
from physical colors, i.e. those that we attribute to certain wavelengths. While
color impressions, such as blue or green correspond to a continuous range of
wavelengths, color impressions such as brown, grey, or white are mixtures
of different wavelengths. For example, the color impression white results if
the three kinds of cones are stimulated in equal measure. Even worse, color
perception may differ between male and females [VT04], between cultures,
and even in the same individual depending on the adaption of the eye to the
surrounding illumination (this is also known as the Purkinje effect) or on what
he or she has seen before, because of the inertia of the visual system.

2.1.4 Pattern Perception

Pattern perception is the task of deciding whether visual elements such as
lines and areas belong to the same object. On the basis of experimental re-
sults, Gestalt theory [Wer23, PR94] suggests that the human brain uses the

18 2 Visualization Basics

(a) (b) (c)(a) (b) (c)

Fig. 2.3. Pattern perception: which circles belong to the same object?

following criteria in decreasing importance to perceive patterns: connected-
ness, proximity, similarity of color or shape, continuity of curves, symmetry,
closure of areas, relative size, orientation, background, and transparency. For
example, in Fig. 2.3a the two outer circles seem to form an outer ring because
of proximity, in Fig. 2.3b the inner circles seem to form a disk because the
have a similar line style, and in Fig. 2.3c they form an inner disk because of
connectedness. When we look at these figures, our brain may switch from one
interpretation to another.

2.1.5 Preattentive Perception

Features of visual objects are preattentive [HBE96] if they are perceived within
200 ms, i.e. the time interval it takes before the eye reacts and moves. Such
features include the orientation, length, and width of lines, the size of an
object, curvature, number, intersection, color, luminance, flicker, direction of
movement, gloss, spatial depth, and light direction. In each of the three groups
of objects in Fig. 2.4, one of the elements is immediately spotted because of
its color, shape, or size.

Color Shape SizeColor Shape Size

Fig. 2.4. Preattentive perception

2.1 Perception and Cognition 19

2.1.6 Motion Perception

In the evolution of humans, motion perception has been an important ability
both for protection from predators and for hunting. Motion perception is the
task of deciding whether visual elements such as lines and areas perform the
same movement in subsequent pictures. It is based on pattern recognition, but
in addition it requires one to detect changes of features such as form, color,
or position. To detect these changes, a correspondence between elements in
subsequent pictures has to be established. The illusion of backward-spinning
wagon wheels in Western movies demonstrates that it is possible that the
mind can match the wrong elements – here, the spokes on a wheel, because
of their proximity, as shown in Fig. 2.5.

CorrectWrong CorrectWrong

Fig. 2.5. Correspondence of spokes on a rotating wagon wheel

If an object starts moving within a certain time interval after another
object has stopped moving, the latter is perceived to cause the movement of
the former object. If the time interval becomes too large, typically longer than
160 ms, then the mind does not establish this causality. Interestingly, the two
objects do not have to be to next to each other. Instead of drawing a line,
movement can be used to link two objects which are placed in different parts of
the screen. An undirected relation is indicated by both objects performing the
same movement, and a directed link by two sequential movements as discussed
above.

20 2 Visualization Basics

2.1.7 Implications for the Design of Visualizations

As discussed above, the human eye allows color perception only in the center,
no color is perceived in the periphery. The effectiveness of recognizing shapes
decreases with the distance from the center owing to the decreasing density of
receptors. Movements are perceived effectively in the periphery and usually
people react by orienting their focus to the moving objects.

Thus, in the design of a visualization, color should be used for detail in-
formation, shape can be used for detail information about a single object but
also be used to show the relation between different objects, and motion can
be used as a stimulus in the periphery to attract attention and to establish
links between remote objects.

When choosing color palettes, color-deficient vision should be taken into
account. While complete color blindness, also called monochromacy, is very
rare (only 0.003% of the whole population), many people have problems
in seeing certain colors. Surprisingly, 7% of the male population but only
0.5% of the female population suffer from a red-green deficiency. Color
palettes with yellow–blue variations are more acceptable for people with color-
deficient vision. The reader can easily find such palettes on the web, for ex-
ample at http://www.btplc.com/age_disability/ClearerInformation/
Colours/index.htm.

In visualization, color is often used to represent values from a discrete or
continuous numerical interval. In this case each value is mapped to a color –
the value is color coded. The following color scales are widely used, because
they are very intuitive:

Cold-to-hot color scale: blue for cold, green for warm, red for hot.
Traffic light: green for safe, yellow for possibly dangerous, and red for dan-

gerous.
Terrain color scale: green for vegetation, brown for no vegetation, and white

for snow.

Linear optimal color scales [LH92] are used when it is important that the
perceived difference between colors is proportional to the distance between
the values they encode. Whenever possible, software visualization tools should
allow the user to choose among different predefined color scales, as shown in
Fig. 2.6.

Eye-tracking experiments have shown that distribution of the spontaneous
attention of a person looking at a screen is not evenly distributed. If we
divide the screen into two upper and two lower areas, then the left upper
part receives 40%, the right upper part 20%, the left lower part 25%, and
the right lower part only 15% of the user’s attention. Accordingly, important
information should be placed in the areas of high attention, and less important
information in those of low attention. Like many psychological results, this
one depends heavily depends on culture. For example, in Arabic-speaking
countries one reads from right to left, and so the upper right part is most

2.2 Graphical Representation 21

Fig. 2.6. Color scales in the EpoSee tool

prominent. It is quite illuminating to look at Web pages that allow one to
switch between Arabian and English, Hebrew and English, or Chinese and
English, for example, because not only the font and the orientation of the
writing but also other properties of the layout change.

2.2 Graphical Representation

To visually encode information, one can use text as well as two- or three-
dimensional computer graphical representations. As software visualization
mostly deals with software artifacts and their interrelations, graph-based rep-
resentations play a major role.

2.2.1 Graphical Primitives and Properties

Visualizations are built from points, lines, areas, and volumes. These prim-
itives have various properties: size, length, width, height, volume, position,
orientation, angle, slope, color, grayscale, texture, and shape.

22 2 Visualization Basics

In addition, graphical objects can have dynamics, i.e. one or more proper-
ties change over time. Dynamics range from simple blinking or translation of
objects to complex animations.

All these properties can be used to encode information. Consider, for ex-
ample, a traffic light. For each of its three lights, its color (green, yellow, or
red), its shape (e.g. round, walking man, or arrow), its relative position (e.g.
the lowest light is the green one) and its dynamics (blinking) are meaningful.
For color-blind people, in the case of the traffic light, it is important that
position and color convey redundant information.

2.2.2 Text

Text consists of words. Words are sequences of characters from an alphabet,
and words usually have a meaning. Textual information can be augmented
by visual cues such as underlining, color, font, face, and orientation to show
additional information, highlight important parts, or make the structure more
explicit. The art of presenting text in a readable and visually pleasing way is
known as typography [Bri02].

2.2.3 Diagrams

A diagram is a graphical representation where the geometrical relations be-
tween its parts illustrate relations between the objects represented by those
parts. These geometrical relations include neighborhood, linkage, contain-
ment, and overlapping. For example, graphs use linkage, while Venn diagrams
use containment and overlapping to visualize relations. In the following sec-
tion, we take a closer look at graphs.

Larkin and Simon have characterized diagrams as representations where
information is indexed by its two-dimensional location [LS87], whereas textual
information is indexed by its sequential position. If done right, diagrams group
relevant information together to make searching more efficient, and use visual
cues to make information more explicit.

2.2.4 3D Graphics and Rendering

Many computer graphics systems, in particular those which have to render
graphics in real time, use the following architecture. Objects are given by
mathematical models or directly by a mesh of polygons. A polygon mesh
defines the hull of an object as a set of faces. These faces can be subdivided
into triangles. These triangles are determined by their corner points in the
local coordinate system of the object. The triangles pass through a sequence
of processing units in the rendering software. The output of one unit is used
as input by the next one. This sequence of processing units is called a graphics
or rendering pipeline (see Fig. 2.7). Modern 3D graphics cards provide partial
or even complete hardware implementations of some of the processing units.
The units are as follows:

2.2 Graphical Representation 23

Fig. 2.7. 3D computer graphics pipeline

24 2 Visualization Basics

1. Transformation: The triangle is placed in the global coordinate system, i.e.
rotations, translations, and scaling are applied.

2. Backface Culling: Triangles have front and back faces. In certain situations
back faces do not have to be rendered. For such triangles, the unit checks
whether the viewer sees the front or back face. In the latter case the
triangle is not processed further. As an example, consider a cardboard
box. If the box is closed, then one cannot see the inner faces of the sides
from outside, as they are always hidden by other sides.

3. Lighting: At this stage, the color of the triangle is determined. Its own
color, brightness, transparency, and reflection properties, as well as the
color of the rays of light which fall on it, have to be combined. The result-
ing color is computed using lighting equations, which only weakly relate to
optical laws as developed in physics, but yield realistic color effects with
less computational effort.

4. Texture Mapping: Two-dimensional images are mapped onto the flat sur-
face of the object. By a clever choice of such images, one can achieve the
impression of a three-dimensional surface. At this stage, the corner points
of the triangle are mapped to coordinates of the texture.

5. Clipping: If the triangle is not in the field of view, this unit removes it from
the pipeline, i.e. it is not processed further. This stage, also known as view
frustrum clipping, is an instance of polygon culling.

6. Projection: The triangle is now projected onto the viewing plane. For this,
one computes the points of intersection between the viewing plane and
the straight lines connecting the corner points of the triangle with the
current position of the viewer.

7. Rasterization: So far, every triangle has been given only by its corner
points. Now a raster is put onto the viewing plane. The resolution of
this raster usually relates directly to the resolution of the computer dis-
play. The cells of the raster are called pixels (= picture elements). Every
pixel which lies within the triangle is given the color of the triangle. In
fact, a second raster, the Z-buffer, stores the distance of the point from
the current position of the viewer. If a pixel is to be set to a new color,
the unit checks whether the point is closer to the viewer than the value
currently stored in the Z-buffer. If this is true, the pixel is set to that color
and the new distance is stored in the Z-buffer. That is, the hiding of one
object by another object is computed pointwise.

For simplicity, we have assumed that a triangle has a unique color. This is
also called “flat shading”. There are other shading algorithms, for example the
Gouraud and Phong shading algorithms which use interpolation to compute
the color for each pixel. More information on computer graphics and rendering
algorithms can be found in established textbooks [FvDFH96, Wat93].

2.3 General Information Visualization Techniques 25

2.3 General Information Visualization Techniques

The goal of information visualization is to display abstract quantities and
relations in a natural and intuitive way, in order to help the user better un-
derstand and gain insights into the data.

Many of the visualization techniques follow one of the following two prin-
ciples:

Interactive Exploration: To explore the data, interactive visualizations should
allow the user to first get an overview, then zoom and filter, and get
the details on demand. This principle was called the Information Seeking
Mantra by Ben Shneiderman [Shn96].

Focus + Context: A detailed visualization of some part of the information –
the focus – is embedded within a visualization of the context, i.e. more
coarse-grained information about parts related to the focus. Thus fo-
cus + context techniques provide both an overview and detail at the same
time.

Fig. 2.8. Perspective Wall

2.3.1 Visualization of Textual Data

The perspective wall [MRC91] (Fig. 2.8) is a three-dimensional technique to
present textual (and graphical) data by integrating a central view of details
with two perspective views, one at each side, to display the context. The
technique uses horizontal perspective distortion to compress the visual rep-
resentation of the context. The Tablelens [RC94] uses both horizontal and
vertical distortion to show some cells of a table in more detail than others.
The rows and columns that form the context can actually be reduced to the
width or length of a pixel.

26 2 Visualization Basics

2.3.2 Graph Drawing

Graphs are mathematical structures widely used to describe relationships be-
tween objects. In graphs, the objects are called nodes, and the relationships
are called edges.

Graphs are often characterized by one or more of the following properties.
First of all, graphs can be directed or undirected, which means that the edges
may have a direction or not. Graphs can be cyclic, i.e. contain a cycle, or
acyclic, i.e. contain no cycles at all. A graph is disconnected if its nodes can
be partitioned into two sets such that there is not a single edge between a
node in one of the sets to a node in the other set. Otherwise, the graph is
called connected. A graph is bipartite if its nodes can be partitioned into two
sets such that there is not a single edge between two nodes within the same
set. A graph is planar, if it can be drawn such that no two edges intersect.
Otherwise, it is called nonplanar. Finally, a tree is a connected, directed graph
which has exactly one node that has no incoming edges and all other nodes
have exactly one incoming edge. The former node is called the root of the
tree. Nodes with no outgoing edges are called leaves.

Graph drawing is the art of drawing a diagram of a graph to facilitate
understanding of relations between objects [dBETT98, KW01, San96]. Graph-
drawing techniques are used to lay out bus maps, family trees, word graphs,
VLSI designs, and workflow diagrams, for instance. Graphs play a crucial role
in software engineering. Petri nets, control-flow graphs, syntax trees, finite-
state diagrams, and complex data structures are graphs.

The goal of drawing a graph is to convey its underlying information. To
this end, various aesthetic criteria [PCJ96] have been investigated, including:

Crossing minimization: If a graph is nonplanar, it should be drawn with as
few crossings as possible.

Bend minimization: Edges should have as few bends as possible. Recently,
studies have shown that continuity of edges is more important than the
number of bends.

Area minimization: The area of the drawing should be small and there should
be a homogenous density or an even distribution of the nodes.

Length minimization: Shorter edges are more easy to follow. To this end, one
tries to minimize the the total edge length and the length of the longest
edge.

Angle maximization: Small angles between outgoing edges and in bends make
it difficult to discriminate the edges.

Symmetries: Symmetries in the underlying graph should be reflected in the
diagram.

Clustering: For large graphs, parts of the graph which are strongly intercon-
nected – called clusters – should be drawn separate from other such parts.
Edges drawn within a cluster should be shorter than those connecting
different clusters.

2.3 General Information Visualization Techniques 27

Graph-drawing techniques differ in the kinds of graphs they are suitable
for, as well as in the basic principles underlying the drawing algorithm. Some
important classes of drawing algorithms are orthogonal, force-directed, hier-
archical, tree, and circular layout algorithms. The following were produced
using the DGD tool [GARG].

Fig. 2.9. Force-directed layout

Force-directed layout (Fig. 2.9): The graph is viewed as a physical system
composed, for example, of springs connected to each other, where the springs
represent the edges of the graph and the connection points the nodes [Ead84].
The layout is computed by minimizing the energy of the system. Often, in
addition, other physical metaphors are such as polar and parallel magnetic
fields or gravity are used.
Hierarchical layout (Fig. 2.10): The computation of a hierarchical layout
of a graph following the Sugiyama approach [STT81] includes several phases.
First all nodes are distributed in discrete layers (the ranking phase), then the
nodes of each layer are arranged, and finally the layout, including the edge
routing, is computed from the layers and their arrangement.
Orthogonal layout (Fig. 2.11): In an orthogonal layout, the edges run
either horizontally or vertically and edge bends must have an angle of 90 de-
grees. There are many different kinds of algorithms for producing orthogonal
layouts. Typically, the goal is to minimize the number of edge crossings and
bends. Several of the algorithms are based on minimal network flow algo-
rithms.

28 2 Visualization Basics

Fig. 2.10. Hierarchical layout

Fig. 2.11. Orthogonal layout

Dynamic graph drawing (Fig. 2.12): Dynamic graph drawing addresses
the problem of layouting graphs which evolve over time by adding and deleting
edges and nodes. This results in an additional aesthetic criterium known as
“preserving the mental map” [MELS95]. The term mental map refers to the
abstract structural information a user forms by looking at the layout of a

2.3 General Information Visualization Techniques 29

Fig. 2.12. Two graph animations of the same sequence of graphs

graph. The mental map facilitates navigation in the graph or comparison of
it and other graphs. In the context of dynamic graph drawing changes to this
map should be minimal. Incremental algorithms try to change the layout just
as far as to accomodate the update. Unfortunately, in the worst case they have
to compute the layout of the whole graph [Bra01]. In some applications all
changes are even known beforehand, e.g. if we want to visualize the evolution
of a social network based on an email archive, or the evolution of program
structures stored in software archives. In these kinds of applications each graph
can be drawn being fully aware of what graphs will follow [DG02, EHK+03].

The two animations in Fig. 2.12 show the same sequence of graphs. The
animation in the top portion of the figure was produced using an ad hoc
approach, whereas the animation in the bottom portion of the figure was
produced using the hierarchical FLT algorithm [GBPD04].

2.3.3 Visualization of Hierarchies

Hierarchies are a common and powerful tool for structuring information;
graph-theoretically, hierarchies are trees.

Trees are typically drawn as node and edge diagrams, where each node is
represented by a box, circle, or ellipse, while the edges are represented by lines
(see the left part of Fig. 2.13. These kinds of tree diagram waste much space
in the upper part, as the number of nodes per layer of the tree increases – in
the worst case exponentially – with depth. Many screen-filling techniques have
been developed to fit large hierarchies onto the screen and avoid empty screen

30 2 Visualization Basics

space. Instead of connecting nodes by lines, most of these use alternative
representations such as containment or neighborhood.

B
D

E
F

D

B C

A

E

F

Fig. 2.13. Node and edge tree diagram vs. treemap

Treemaps [JS91] visually encode the child property by containment in-
stead of connectedness. The basic idea of treemaps is to recursively divide an
area into nonoverlapping subareas according to a given hierarchy. In many
applications, the size of each subarea in the treemap is proportional to some
weight, which in the simplest case is just the sum of all elements in the corre-
sponding subtree. Many variants have been developed during the last decade,
including ordered treemaps [SW01], squarified treemaps [BHvW00], cushion
treemaps [vWvdW99], and Voronoi treemaps [BD05].

Information pyramids [AWP97] are a three-dimensional variant of treemaps.
As with treemaps, every node is represented by a rectangle. The rectangle in
the lowest layer represents the root, and layers with smaller rectangles rep-
resenting subtrees are put on top. The size of each rectangle is proportional
to the size of the subtree that it represents. Both information pyramids and
treemaps provide a good overview, but it is difficult to focus on nodes other
than leaf nodes.

Another approach used to cope with the exponential growth of nodes per
layer are cone trees [RMC91]. cone trees are a three-dimensional extension
of node-edge tree diagrams. For each layer the children of a single node are
placed on a disk. By rotation, the nodes on the disk are brought to the front
and others are moved to the background. A shadow of the whole cone tree is
cast on the floor below the tree to provide a 2D overview of its structure and
density. Navigation in cone trees is complicated, but they allow one to focus
on a certain path in the tree while still showing the whole tree.

Information slices [AH98] and the visualizations of the Sunburst sys-
tem [SZ00] are 2D diagrams that place nodes of the same subtree on a sector
of a disk (or semidisk) and each layer of the tree is represented by a ring of the
disk (see Fig. 2.14). Here the child property is visually encoded by proximity
and color.

2.4 Visual Metaphors 31

D

B C

A

E

F A

B

F

C

D

E

Fig. 2.14. Node and edge tree diagram vs. disk-based visualization

While the above visualization techniques try to exploit the screen space
efficiently, they are poor visual metaphors when it comes to transferring prop-
erties from the visual objects to the represented objects. Botanical visualiza-
tion [KvdWW01] takes the tree metaphor literally and represents hierarchies
as trees in 3D. Nonleaf nodes are represented as branches, and sets of leaf
nodes as fruit – a sphere with a spot or cone for each leaf node in the set.

2.4 Visual Metaphors

A visual metaphor is an analogy which underlies a graphical representation
of an abstract entity or concept with the goal of transferring properties from
the domain of the graphical representation to that of the abstract entity or
concept. As Lakoff and Johnson put it [LJ80], “The essence of metaphor
is understanding and experiencing one kind of thing in terms of another.”
A well-known example is the desktop metaphor that governs the design of
the graphical user interface of most modern operating systems. A common
problem with metaphors is that the properties that we transfer from the source
to the target domain might be different from those originally intended by the
designer [Mad94].

While simple two- or three-dimensional geometric metaphors such as cir-
cles, rectangles, cones, boxes, and cylinders, as well as graph- and matrix-
based metaphors, still dominate in information visualization, other more so-
phisticated metaphors have been explored.

For geographic information, maps are widely used to display spatial in-
formation. As we are used to interpreting such maps and using them for
navigation in the real world, it does not come as a big surprise that the map
metaphor is often applied to display multidimensional abstract information
by selecting two of the dimensions to span the 2D space as well.

32 2 Visualization Basics

The landscape metaphor goes even further. Here, three abstract dimensions
span the 3D space, and real-world objects such as hills, valleys, rivers, and
streets are used to represent abstract entities or relations. The city metaphor,
which can be seen as a part of the landscape metaphor, represents abstract
entities and relations by houses, buildings, towers, and streets.

Relational information is often depicted using the galaxy or solar system
metaphor [GYB04]. Technically, such a visualization can be produced by using
a graph layout algorithm such as force-directed layout or more sophisticated
clustering algorithms to place the nodes in two or three dimensions. Nodes are
displayed as planets or stars. Instead of drawing edges between these nodes,
the relation is visually represented by proximity, i.e. two related nodes are
placed close together.

When choosing visual metaphors, one has to make sure that the num-
ber of visual representations provided by the metaphor suffices to cover all
objects in the software domain. Furthermore, the metaphor should be used
in a consistent way2. Very often, the metaphor does not provide enough vi-
sual representations and the designers of a visualization resort to combining
representations from different metaphors.3

2.5 Summary

In this chapter we have discussed that what we see, in particular its resolution
and color, relies on the physiology of the eye, and that there are rules which
guide the perception of patterns and motion. This knowledge can help to
explain why certain visualizations work and others do not. Optical illusions
help researchers to understand how the human visual cognition works. The
show limits and problems that might occur in visualizations.

We have also briefly looked information visualization techniques and graph
drawing, because they are used by many software visualization systems. Thus
software visualization research gains from results in fields such as cognitive
psychology and graph drawing, but also researchers in those fields can use
software visualization as a test bed for their techniques and theories.

Exercises

Exercise 1: How would Fig. 2.13 and Fig. 2.15 look if you were to use trian-
gular instead of rectangular areas, such that the areas of the triangles are
proportional to the size of the elements and subtrees that they represent?

2 For example, when a file on the Apple desktop is dragged onto the trash can, the
file is deleted, while when a disk is dragged onto the trash can, it is only ejected.

3 Who would ever put windows on a desktop in the real world?

Exercises 33

Horizontal split

h r
i
*h

Vertical split

w

r
i
*w

Fig. 2.15. Computing box sizes in a treemap

Exercise 2: Implement a treemap in Java. Given the name of a directory your
program should show the treemap of the directory such that the size of
each box indicates the size of the file or directory and the color of each
box the age or type of the file. Let si be the size of the ith element in a
directory. Then the total size s is s =

∑
1≤i≤n si and the ratio of the box

for the ith element is ri = si/s. The width and height of the boxes are
computed as shown in Fig. 2.15.
To make things easier you can find on the Web page given in the
Preface the Java source code of the class DirectoryTree. The method
getDirectoryTree() of this class reads the name, size and age of a direc-
tory and all its subdirectories and files into a data structure. The source
code also contains a class LOCS that maps numbers in the range 0–255 to a
color scale. Make your visualization more interactive. When the user moves
the cursor on a box, the name of the file or directory should automatically
be shown below the cursor. (Hint: see class MouseMotionListener.)

3

Static Program Visualization

In this chapter we look at various ways to visualize the structure of a program
given the program text as a sequence of characters. We discuss both text-based
and diagrammatic methods, and take a closer look a syntax-directed, recursive
method to compute the layout of control-flow diagrams. Then the computation
of static properties of programs is discussed and we give some examples of
systems that visualize results of static program analyses. Finally, we look
at the visualization of structure of software at higher levels of abstraction,
including its architecture.

3.1 Textual Representations

Program text is a sequence of characters. Typically one distinguishes two kinds
of characters: printable and nonprintable characters. Contiguous sequences of
printable characters form strings. Nonprintable characters such as blank and
line feed separate these strings. There are special strings or characters such as
parentheses or keywords, for example begin and end, that serve as delimiters.
The strings enclosed by these delimiters form a block.

3.1.1 Pretty Printing

The goal of pretty printing is to make the nesting of these blocks visible while
using a minimal number of lines for each block. Originally pretty printing
was restricted to the use of indentation, spaces, and line breaks to make the
structure of a program more explicit. Declarations can be vertically aligned by
tabbing. Different widths of spaces in declarations make operator precedence
more explicit. With the advance of technology, also fonts, font face, and colors
are now used: for example, bold face may be used for keywords and italic for
comments. Different font sizes can indicate nesting levels (lexical scope). As
can be seen in the example in Fig. 3.1, if done wrongly pretty printing can

36 3 Static Program Visualization

suggest wrong nesting. In the pretty-printed text on the right, the statement
i++ seems to be part of the body of the loop.

int i,c; while(i<100) if (i%2==0) c++; i++;↓ ↓
int i,c;

while (i<100)

if (i % 2==0) c++;

i++;

int i,c;

while (i<100)

if (i % 2==0) c++;

i++; ← WRONG !!!

Fig. 3.1. Pretty printing

Automatic pretty printing is not a trivial problem. Among the issues ad-
dressed by pretty-printing algorithms are language independence, efficiency,
use of available space such as line width and window height, and incremental
updating in editors. Most current implementations are extensions and opti-
mizations of Oppen’s algorithm [Opp80]. This consists of two parallel pro-
cesses. The first computes the size needed for each string and block, while the
second uses this information to produce the final layout, taking the available
line width into account.

3.1.2 Program as Publication

In 1984 Donald Knuth, the inventor of the document typesetting system TEX,
introduced the term literate programming [Knu84, Knu92], evangelizing the
idea that programs should be considered as works of literature. To facilitate
the production of well-documented and neatly typeset programs, Knuth de-
veloped the WEB tool:

I’m pleased that my work on typography, which began as an applica-
tion of computers to another field, has come full circle and become an
application of typography to the heart of computer science.

[Knu84]

With less focus on tool support, Baecker and Marcus investigated the
use of typography to increase the readability of programs [BM98, BM89].
These authors suggested that program books should be produced with the
same care as other textbooks. Their program book begins with the front
matter, including a cover page, a title page, an abstract, a program history,
information about the authors, and a table of contents.

The first chapter contains the user documentation, for example in the
form of a tutorial on how to use the program. The second chapter gives an
overview of the program structure through a program map and the call hi-
erarchy. The program map is a table, with thumbnails of each program code

3.1 Textual Representations 37

Fig. 3.2. A page from a program book (c©1989 ACM)

38 3 Static Program Visualization

page with major function names emphasized. Each subsequent chapter con-
tains the pretty-printed program code of a source file (here files with extension
.c and .h) with comments in the margins (see Fig. 3.2). The last chapter of
the book provides the programmer documentation, including the installation
and maintenance guides. At the end of the book several indexes such as the
cross-references, caller index, and callee index are given. Finally, on the back
cover page, the highlights of the content of the book are summarized.

3.2 Diagrammatic Representations

Since the early days of computer science, diagrams have been used to show
the structure of programs. In these diagrams relations between program parts
are visually encoded by the following methods:

Position: For example, the start node of a finite automaton is placed on the
left and the start node of a control-flow graph is placed at the top, while
the final node is placed on the right or at the bottom, respectively.

Linkage: Edges in a call graph, indicate which function invokes which other
function, and edges in a control-flow diagram connect subsequent actions.

Neighborhood: In control-flow diagrams, alternative actions are often placed
next to each other.

Containment: In Nassi–Shneiderman diagrams, a box representing a complex
action contains the boxes of its subactions.

3.2.1 Jackson Diagrams

We start our discussion of diagrammatic techniques with Jackson diagrams,
which decompose a program hierarchically [Jac75]. According to the Jack-
son structured-programming methodology, the data structures involved are
first hierarchically decomposed using these diagrams, and then the program
structure should follow this decomposition.

A

B C

A

B C

A

B * C C1 C2

Fig. 3.3. Sequences, iterations, and alternatives in Jackson diagrams

The basic elements of Jackson diagrams are actions. Actions are decom-
posed into subactions, as shown in Fig. 3.3. A sequence A consists of the
execution of a subaction C after a subaction B. An iteration A consists of mul-
tiple repetitions of B as long as an iteration condition C holds. Finally, an

3.2 Diagrammatic Representations 39

Withdraw amount

from cardholder‘s

account

Add amount

to payee‘s

account

Process

non-valid

bill

Process

valid

bill

Process credit card bills

Process bill * C1

C2 C3

Fig. 3.4. Example: Jackson diagram for designing a system

alternative A is either a subaction B if a condition C1 holds, or a subaction C
if a condition C2 is true.

A Jackson diagram of the processing of credit-card bills is shown in the
example in Fig. 3.4. Condition C1 is true if the stack of bills is not empty, C2
is true if the number of the credit card is not valid, and C3 is true otherwise.
The diagram shows the hierarchical decomposition of the task of processing
credit card bills. Each credit card bill is processed one after another. There is
a subaction for valid and nonvalid bills. For valid bills, the amount has to be
withdrawn from the cardholder’s account and added to the payee’s account.

int fact(n) {

if (n>1)

{ nfact=2;

for(int i=3;i<=n;i++)

nfact=nfact*i;

}

else

{ nfact=1;

}

return nfact;

}

nfact=2 i=3

nfact=1

fact(n)

C1

C1 C2

*

nfact=nfact*i i=i+1

C1: n<=1

C2: n>1

C3: i<=n

Fig. 3.5. Example: Jackson diagram of a factorial program

Jackson diagrams were originally meant for the top-down design of appli-
cation programs. Nevertheless, we can also use them to visualize the structure

40 3 Static Program Visualization

of mathematical algorithms. For example, the Jackson diagram for a factorial
program is shown in Fig. 3.5.

3.2.2 Control-Flow Graphs

In 1947 Goldstine and von Neumann [GvN47] introduced control-flow graphs
(CFGs for short) to depict the structure of programs.

Statement Test?
T F

Fig. 3.6. Statements and alternatives in a control-flow graph

In these graphs, rectangular nodes represent events, activities, processes,
functions, or statements, whereas nodes in the form of a diamond contain
branch conditions and can have several exits (outgoing edges). Edges in the
graph are drawn as arrows and depict transitions from one statement to an-
other, i.e. the flow of control (see Fig. 3.6). Later, many more graphical ele-
ments were added and have been standardized in DIN 66001 (flowcharts).

int fact(n) { if (n>1)

{ nfact=2;

int i=3;

while(i<=n)

{ nfact=nfact*i;

i=i+1;

}

}

else

{ nfact=1;

}

return nfact;

}

nfact=2

n>1
T F

i=3

i<=n

T

F

nfact=nfact*i

i=i+1

nfact=1

Fig. 3.7. Example: Control-flow graph of a factorial program

3.2 Diagrammatic Representations 41

In Fig. 3.7 a control-flow graph of the factorial program shown earlier is
depicted. To produce this graph, the for loop has been converted1 into a
while loop. For many applications of control-flow graphs, it is convenient to
combine sequences of statements into a single node, called a basic block, as
shown in Fig. 3.8.

n=100

x=0

z=0

n=100

x=0

z=0

Fig. 3.8. Basic block

Automatic Generation of CFGs The first CFGs were drawn by hand to
develop, explain or debug programs. But soon researchers developed programs
to automatically compute and layout the control-flow graph of a given pro-
gram [Hai59, Knu63]. One of those early systems was developed by A. E. Scott
on an IBM 705 [Sco58]. The laid-out graph was drawn by a text printer with
a very limited character set. Figure 3.9) shows a representation very similar
to the one produced by Scott’s algorithm for a factorial program. Forward
edges are drawn to the right, backward edges to the left of the program text.

We shall now give the syntax of a simple programming language, define
how to compute the CFGs of programs in that language, and, finally, give a
simple layout algorithm for drawing such graphs.

Syntax of a simple programming language A program in the language
that we shall consider in the rest of this chapter consists of assignments,
alternatives, and loops. Expressions can occur on the right-hand side of an
assignment, or in conditions of alternatives and loops. The syntax of the lan-
guage is given in Fig. 3.10. To make the following presentation easier, we also
assume that every statement, i.e. program point, has been given a unique
identifier. In the following, we shall use the notation LG(A) to denote the
language defined by a grammar G for a nonterminal A, or, more formally,

LG(A) = {w|w is a terminal word with A
G→

∗
w}

In particular, LGsimple
(S) is the set of all programs which can be written in

our simple programming language.

1 This is actually a phenomenon that we find very often in both static and dynamic
program visualization: the program is transformed into a semantically equivalent
program that can be visualized more easily.

42 3 Static Program Visualization

Fig. 3.9. Control-flow graph of a factorial program printed as text

Gsimple = { S −→ V=E P

| S;S
| if (E) {S} else {S} P

| while (E) {S} P

V −→ variable name
E −→ expression
P −→ identifier of program point }

Fig. 3.10. Syntax of a simple programming language

Computation of a CFG Let s, si ∈ LGsimple
(S), v ∈ LGsimple

(V), p ∈
LGsimple

(P), and e ∈ LGsimple
(E). Figure 3.11 shows how the CFG of a state-

ment is built from the CFGs of the statements that it contains. For an assign-
ment v=ep, the CFG simply consists of a node representing the assignment.

3.2 Diagrammatic Representations 43

For a sequence s1;s2, of statements there is an arrow from the end of the
CFG built for the first statement to the entry of the CFG built for the second
statement. For a loop while(e) {s}p, a node with the condition e is con-
nected (a true branch) to the CFG built for the body of the loop. From the
end of that CFG, an arrow is drawn back to the loop condition. Finally, for
the alternative if(e) {s1} else {s2}

p, a node representing the condition is
connected to the CFG built for the first statement (a true branch) and to the
CFG built for the second statement (a false branch).

v=ev=e

s1

s2

s1s1

s2s2

e
T

F

s

e
T

F

ss

e
F

s2
s1

T
e

F

s2s2
s1s1

T

Fig. 3.11. CFGs for assignment, sequence, while loop, and alternative instructions

To precisely define the computation of a control-flow graph, we first give
a formal definition of a control-flow graph. A control-flow graph is a tuple
(V, E, in, out), where

• V is a set of nodes,
• E ⊆ V × L × V is a set of edges,
• L = {ε, T, F} is a set of labels,
• and in, out ∈ V are start and end nodes.

Note that according to this definition, a CFG has exactly one entry and
one exit node. Let Γ be the set of all control-flow graphs. Below, we define a
function cfg : LGsimple

(S) −→ Γ which maps programs to control-flow graphs:

cfg(w) = (V, E, in, out), where

if w = v=ep then

⎧⎨
⎩

V = {w, in, out},
E = {(in, ε, w), (w, ε, out)},
and in, out are two new nodes,

if w = s1;s2 then

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V = (V1 − {out1}) ∪ (V2 − {in2}),
E = (E1 − {(v, l, out1)|v ∈ V1})

∪(E2 − {(in2, ε, v)|v ∈ V2})
∪{(v1, l1, v2)|(v1, l1, out1) ∈ E1, (in2, ε, v2) ∈ E2)}

and in = in1, out = out2,
where (V1, E1, in1, out1) = cfg(s1) and (V2, E2, in2, out2) = cfg(s2).

44 3 Static Program Visualization

An invariant in our construction is that an entry node has only one outgo-
ing edge and no incoming edge, whereas an exit node can have many incoming
edges, but has no outgoing edge. To combine two CFGs in a sequence all the
incoming edges of the exit node of the first CFG are connected to the target
node of the outgoing edge of the entry node of the second CFG:

if w = while(e){s}p then

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

V = V0 ∪ {ep},
E = (E0 − ({(in0, ε, v)|v ∈ V0}

∪{(v, l, out0)|v ∈ V0}))
∪ {(in0, ε, e

p), (ep, F, out0)}
∪ {(ep, T, v)|(in0, ε, v) ∈ E0}
∪ {(v, l, ep)|(v, l, out0) ∈ E0}

and in = in0, out = out0,
where (V0, E0, in0, out0) = cfg(s),

if w = if(e){s1}else{s2}
p then⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V = (V1 − {in1, out1}) ∪ (V2 − {in2, out2}) ∪ {ep},
E = (E1 − {(in1, ε, v1), (v2, l, out1)|v1, v2 ∈ V1}

∪ (E2 − {(in2, ε, v1), (v2, l, out2)|v1, v2 ∈ V2}
∪ {(in, ε, ep)}
∪ {(ep, T, v)|(in1, ε, v) ∈ E1}
∪ {(v, l, out)|(v, l, out1) ∈ E1}
∪ {(ep, F, v)|(in2, ε, v) ∈ E2}
∪ {(v, l, out)|(v, l, out2) ∈ E2}

and in, out are two new nodes,
where (Vi, Ei, ini, outi) = cfg(si).

Simple Layout of CFGs We use rectangular boxes and place in and out
nodes in the middle of the upper and lower borders. Figures 3.12 and 3.13
show how the box heights for expressions and loops are computed.

e

w

he

w

h

Fig. 3.12. Box heights of a CFG for an expression

For expressions, the height h depends on the font size, and the width also
depends on the length of the expression. For a while loop, the heights h1, h2

and h3 are fixed, whereas the heights he and hs depend on the heights of the
boxes computed for the loop condition e and the body s of the loop. So we can
compute H = h1 + h2 + h3 beforehand. As a result, we have h = H + he + hs.

3.2 Diagrammatic Representations 45

e

T

F

s

h1

he

h2

hs

h3

e

T

F

s

h1

he

h2

hs

h3

Fig. 3.13. Box heights of a CFG for a loop

More precisely, we can define the computation of the widths and heights of
these boxes by a recursive function. We define a function box : LGsimple

(S) −→
R × R which maps each program to the size of the box required to lay out
the control-flow graph of the program:

box(e) = (w, h) where w, h depend on the font.

box(s1;s2) = (W + max(w1, w2), H + h1 + h2) where (wi, hi) = box(si)

box(while(e){s}) = (W +max(we, ws), H +he +hs) where (we, he) = box(e)
and (ws, hs) = box(s)

Knowing the size of each box, we can easily draw the arrows, as we only
have to connect them to the middle of the upper or lower border of a box.

3.2.3 Nassi–Shneiderman Diagrams

To enforce more structured programs, Nassi and Shneiderman introduced
nested rectangular diagrams, also known as structograms [NS73]:

Not only does this notation help the programmer to think in an or-
derly manner, it forces him or her to do so. . . . The absence of any
representation of the GOTO or branch statement requires the pro-
grammer to work without it: a task which becomes increasingly easy
with practice.

[NS73]

46 3 Static Program Visualization

The primitive diagrams are shown in Fig. 3.14.

Fig. 3.14. Basic Nassi–Shneiderman diagrams

As an example, consider the Nassi–Shneiderman diagram of the factorial
program shown in Fig. 3.15. This consists of an alternative followed by a
return statement. In the left part of the alternative we see the loop for n > 1;
in all other cases, the right part is executed.

int fact(n) { if (n>1)

{ nfact=2;

for(int i=3;i<=n;i++)

nfact=nfact*i;

}

else

{ nfact=1;

}

return nfact;

}

fact(n)

n>1
True False

n>1
True False

nfact=2

nfact=1for i=3 to n

nfact=nfact*i

return nfact

Fig. 3.15. Nassi–Shneiderman diagram of a factorial program

The kinds of control flow that can be modeled with these diagrams are re-
stricted by the fact that rectangles are always disjoint from or fully enclosed
by other rectangles. There is no overlap. A similar restriction is true for the
control-flow graphs that we constructed above for our simple programming
language, but if we were to add jumps to our language this would no longer
be the case: Gspaghetti = Gsimple ∪ { S −→ goto L P, S −→ L : S P, L −→
label of program point }. Actually, with these jumps we can even specify pro-
grams that have a nonplanar control-flow graph, i.e. that can not be drawn
without edge crossings. Figure 3.16 shows the smallest (with respect to the
number of edges) such control-flow graph. In essence, it is a bipartite graph
with six nodes, i.e. there are two partitions with three nodes each and each
node in one partition is connected to every node in the other partition (see
the Kuratowski reduction theorem in [Tho81]). In graph theory, this graph is
often denoted by K3,3.

3.2 Diagrammatic Representations 47

L1: if (a1>0) goto L5

else goto L4

L2: if (a2>0) goto L6

else goto L5

L3: if (a3>0) goto L4

else goto L6

L4: if (a4>0) goto L2

L5: if (a5>0) goto L2

L6: if (a6>0) goto L1

a1>0
L1

a2>0
L2

a3>0
L3

a4>0
L4

a5>0
L5

a6>0
L6

F

F

F

T

T

T T

T

T

Fig. 3.16. The smallest nonplanar control-flow graph

3.2.4 Control-Structure Diagrams

Both control-flow graphs and Nassi–Shneiderman diagrams deviate from the
sequential order of the program parts in the source code. Control-structure Di-
agrams [CHM98] keep this order, but make the nesting and scope of program
constructs more explicit by augmenting the indented program text with a hor-
izontal tree. Vertical lines show the extent of blocks, and vertically stretched
oval lines show that of loops. Diamonds indicate the alternatives of conditional
statements (see Fig. 3.17). The GRASP tool [Cro] automatically produces
control-structure diagrams from program code. There exist versions for Ada
95, C, C++, and Java.

Fig. 3.17. Basic control-structure diagrams: sequence, conditional, and loop

There are many more basic control-structure diagrams that can be used
to build program representations from. Here we have only chosen those which
we need for our running example, the factorial program. Its control-structure
diagram is shown in Fig. 3.18.

48 3 Static Program Visualization

int fact(int n)

end fact;

- int nfact;

if (n>1)

begin
nfact=2;

for(int i=3; i<=n; i++) loop

nfact=nfact*i;
end loop;

end
else
nfact=1;

end if;

return nfact;

Fig. 3.18. Control-structure diagram for factorial program

3.3 Visualizing the Results of Program Analyses

In this section, we shall look at static program analyses. First we shall dis-
cuss why control-flow analysis, i.e. the computation of the CFG for a given
program, is not always as simple as it is for the language that we used in the
previous section. Then we shall give an introduction to data-flow analysis and
look at two such analyses in more detail. Finally we shall give some examples
of systems that visualize such and similar analysis results.

3.3.1 Static Analysis

Static analysis computes properties of a program which hold for all executions
of the program [NNH99]. It is important to note that not every property can
be computed, because there is no general program that takes another program
as its input and decides whether this program finishes after finitely many steps
or runs forever.2 We call those properties which cannot be computed before
run time “dynamic”. For example, the number of times a program point is
executed for a given input is a dynamic property, while the fact that a program
point is not executed for any possible input is a static property.

2 This fact was proven by Alan Turing in 1936 and is known as the undecidability
of the halting problem [Tur36].

3.3 Visualizing the Results of Program Analyses 49

3.3.2 Control-Flow Analysis

Control-flow analysis computes the control-flow graph of a program. For the
sample language defined earlier in this chapter, the algorithm presented was
very easy. If we consider real programming languages, the problem becomes
much harder. Such programming languages typically have procedural abstrac-
tion. Each procedure has its own control-flow graph, but owing to procedure
calls within the body of a procedure, these graphs are interconnected. Thus
we distinguish intraprocedural and interprocedural control-flow graphs.

n>0
T

pong(n-2)

F

P
ro

c
e

d
u

re
p

in
g

(i
n

t
n

)

n>0
T

ping(n+1)

F

P
ro

c
e

d
u

re
p

o
n

g
(i

n
t
n

)
n>0

T

pong(n-2)

F

P
ro

c
e

d
u

re
p

in
g

(i
n

t
n

)

n>0
T

ping(n+1)

F

P
ro

c
e

d
u

re
p

o
n

g
(i

n
t
n

)

Fig. 3.19. Interprocedural control-flow graph

So, if we have a call of procedure q in the body of procedure p, we draw
an arrow from the program point of the call to the entry node of procedure
q and an arrow from the exit node of q back to the call. Figure 3.19 shows a
control-flow graph of the following simple program:

void ping(int n)
{ if (n>0) pong(n-2); }

void pong(int n)
{ if (n>0) ping(n+1); }

The gray boxes contain the intraprocedural control-flow graphs of the two
procedures. The interprocedural call and return edges are shown by dashed
arrows.

Many modern programming languages have function pointers. They are
a key feature of higher-order functional languages, but they also exist in C.
The problem is that the value of such a function pointer is computed at

50 3 Static Program Visualization

run time and thus it can point to all functions of the program or at least
all functions of a certain type. As a consequence, we have to draw edges
from a program point that calls a function via a function pointer to all these
functions. A similar problem occurs in object-oriented (OO)languages such
as Java. There, we do not have function pointers directly, but references to
objects which contain functions or, in OO lingo, methods. What method is
called depends on the runtime type of the object referred to. Because of this
dynamic dispatch of methods, the interprocedural CFG typically contains
edges to all of those methods which might be called on the basis of the static
type of the reference. By computing better approximations of the runtime
type of the reference [Pro02], the number of possible targets of a method call
can be considerably reduced.

3.3.3 Data-Flow Analysis

Data-flow analysis computes information for each program point about the
data that will reach this program point during execution. Data-flow analyses
provide important information for optimizing compilers [WM95, Lem92]. In
general, data-flow analysis works by propagating locally available information
over the paths in the control-flow graph. We distinguish two kinds of flow
problems on the basis of the direction the information is propagated along
the edges:

Forward-flow problems: what can happen before control reaches this program
point, for example reaching definitions or available expressions?

Backward-flow problem: What can happen after control leaves this program
point, for example live variables, very busy expressions, or reached uses?

Accordingly, for each node v of the control-flow graph, we compute two
functions. The function IN(v) yields information about the state before the
program point is executed, and the function OUT (v) yields information about
the state after the program point is executed.

Available Expressions As an example of a forward-flow problem, we
look at the computation of available expressions. A binary expression e1 op e2

consists of an operation and two expressions e1 and e2 which can contain
binary expressions themselves. A binary expression is available at a program
point p if it has been computed before, i.e. it has to be computed along every
path by which p can be reached. Assume that the expression e occurs at
program point p and is available on all incoming paths. Let p1, . . . , pn be the
program points where the expression was computed before. Then the program
can be optimized by inserting an assignment x=e to a new temporary variable
x before each program point p1, . . . , pn and replacing all occurrences of e in
p1, . . . , pn and in p by x. As a result, the expression is only computed once
and we avoid avoid recomputation.

Let (V, E, in, out) be a control-flow graph and let E be the set of all binary
expressions which occur in the program. Furthermore, let us define two func-

3.3 Visualizing the Results of Program Analyses 51

tions GEN, KILL : V → P(E) which map program points to sets of binary
expressions. The function GEN() yields those binary expressions which are
computed at the program point, while KILL() yields the empty set, unless
the program point is an assignment. In this case it yields all those expressions
in E that do not contain the variable on the left-hand side of the assignment.
The idea is that the values previously computed for these expressions are not
valid beyond this program point. The functions are defined as follows:

GEN(v) =

⎧⎪⎪⎨
⎪⎪⎩

{e′|e′ is a binary subexpression of e} if v = e
{e′|e′ is a binary subexpression of e

and x does not occur in it } if v = x=e
∅ otherwise

KILL(v) =
{{e′|e′ ∈ E and x occurs in e′} if v = x=e
∅ otherwise

The actual data-flow analysis is performed by the following algorithm,
which computes the functions IN() and OUT () by iterating over all nodes
of the control-flow graph and propagating information forward by using the
values of the function IN() to compute those of the function OUT ():

Algorithm 1 (available expressions)
IN(in) = ∅
OUT (in) = ∅
for all v ∈ (V − {in}) do

IN(v) = E
OUT (v) = (IN(v) − KILL(v)) ∪ GEN(v)

while there are changes do
for all v ∈ (V − {in}) do

IN(v) =
⋂

(p,l,v)∈E OUT (p)
OUT (v) = (IN(v) − KILL(v)) ∪ GEN(v)

Example: Available Expressions To illustrate the algorithm, we show the
steps of the computation of available expressions for the control-flow graph
shown in Fig. 3.20.

• Initialization:

E={y+2, n/2, 2*y, n/2+2*y, n/2-2*y, x-2*y}
IN(in)={} OUT(in)={}
IN(p1)=E OUT(p1)=E
IN(p2)=E OUT(p2)={y+2, n/2, 2*y, n/2+2*y, n/2-2*y}
IN(p3)=E OUT(p3)={y+2, n/2, 2*y, n/2+2*y, n/2-2*y}
IN(p4)=E OUT(p4)={n/2}
IN(out)=E OUT(out)=E

52 3 Static Program Visualization

GEN(in)=
GEN(p1)=y+2
GEN(p2)=n/2, 2*y, n/2+2*y
GEN(p3)=n/2, 2*y, n/2-2*y
GEN(p4)=
GEN(out)=

KILL(in)=
KILL(p1)=
KILL(p2)=x-2*y
KILL(p3)=x-2*y
KILL(p4)=y+2, 2*y, n/2+2*y,

n/2-2*y, x-2*y
KILL(out)=

x=n/2+2*y x=n/2-2*y

n>y+2

y=x-2*y

T

F

in

out

p1

p2 p3

p4

Fig. 3.20. Example: available expressions

• First iteration:

IN(p1)={} OUT(p1)={y+2}
IN(p2)={y+2} OUT(p2)={y+2, n/2, 2*y, n/2+2*y}
IN(p3)={y+2} OUT(p3)={y+2, n/2, 2*y, n/2-2*y}
IN(p4)={y+2,n/2, 2*y } OUT(p4)={n/2}
IN(out)={n/2} OUT(out)={n/2}

• Second iteration: in the second iteration, no changes are computed in either
of the functions. Thus a fixpoint is reached.

Live Variables As an example of a backward-flow problem, we discuss the
computation of live variables. A variable x is live at a program point p

• if there is a path from p to p′ and x is used at p′, i.e. it occurs in an
expression,

• and there is no redefinition of x (assignment to x) along that path.

If a variable is not live at a program point, there is no subsequent access to its
value. Thus, an optimizing compiler could produce code that does not store
the value of the variable in memory or in a register beyond this program point.

As before, we define the two functions GEN, KILL : V → P(LG(V)),
which in this case map program points to sets of variables:

3.3 Visualizing the Results of Program Analyses 53

KILL(v) =
{ {x} if v = x=e
∅ otherwise

GEN(v) =
{ {x′|x′ occurs in e} if v ∈ {x=e, e}
∅ otherwise

Note that for assignments, the case x′ = x is possible. The following al-
gorithm performs the backward data-flow analysis: the values of the function
OUT () are computed using those of the function IN():

Algorithm 2 (Live Variables)
for all v ∈ V do

IN(v) = GEN(v)
while there are changes do

for all v ∈ V do
OUT (v) =

⋃
(v,l,s)∈E IN(s)

IN(v) = (OUT (v) − KILL(v)) ∪ GEN(v)

3.3.4 Examples of Visualization of Analysis Results

Some other examples of static analyses are the computation of upper bounds
on the stack usage for each program point, as shown in Fig. 1.4; the inference
of types for all expressions in a program; and the computation of upper bounds
on the worst-case execution times for loops, functions, or complete programs.

In Fig. 3.21 we show a control-flow graph drawn with the aiSee tool [Ang],
a graph-drawing tool used by StackAnalyzer [EB02, Ang] for visualization.
Each program point is annotated with live variables.

Another tool that my be used to visualize graphs for program analysis is
VISTA [Lab]. This combines different graphs in a single view. In the example
in Fig. 3.22, control-flow graphs (CFG), data-dependency graphs (DDG) and
control-dependency graphs (CDG) are shown. In control-dependency graphs,
statements are dependent only on their preceding condition or the entry node.
Control-dependency graphs are similar to Jackson diagrams in that they show
the hierarchical dependency, but there is no order on the children of a node.
Unlike the syntax-directed layout algorithm for control-flow graphs that we
sketched in Sect. 3.2.2, the algorithms used by VISTA are not application-
specific, but are general graph-drawing algorithms.

By combining, for example, the control-flow graph with the data-dependency
graph, one can see what values in what statements influence other values in
other statements and along which paths these statements can be reached.

In Sect. 4.4.7, we shall return to static program analysis and discuss how
it can be combined with dynamic program visualization.

54 3 Static Program Visualization

live

variable

value for

constant

propagation

live

variable

value for

constant

propagation

Fig. 3.21. Live variables shown with aiSee

3.3 Visualizing the Results of Program Analyses 55

Fig. 3.22. Various kinds of graphs drawn by VISTA

56 3 Static Program Visualization

3.4 Visualizing Software Architectures

As the size and complexity of software systems increases, the design
problem goes beyond the algorithms and data structures of the compu-
tation: designing and specifying the overall system structure emerges
as a new kind of problem.

[GS93b]

According to an IEEE standard [IEE00] “Architecture is the fundamental
organization of a system embodied in its components, their relationships to
each other and to the environment and the principles guiding its design and
evolution.” The keywords in this definition are “structure”, “environment”
and “principles”. As will become apparent in this chapter, visualization so far
has concentrated mostly on the structure. Visualizations of software architec-
tures typically deal with the structure at various levels of abstraction. At a
higher level, the architecture consists of components with ports, and ports are
linked through connectors.

When it comes to actually describing an architecture, there are many as-
pects, including its gross organization and global control structure; protocols
for communication, synchronization, and data access; assignment of function-
ality to design elements; physical distribution; composition of design elements;
scaling and performance; and selection among design alternatives [GS93a].
Most of these aspects have both functional and nonfunctional properties and
are often described in natural language illustrated with diagrams.

Breaking a system into modules facilitates the design and development
of software systems. As David Parnas [Par72] put it, “The existence of the
hierarchical structure assures us that we can ‘prune’ off the upper levels of
the tree and start a new tree on the old trunk.”

It is widely accepted in software engineering that when one is designing
software architectures there should be low coupling between modules and high
cohesion within modules [SMC74]. Coupling is “a measure of the strength of
the association established by a connection of one module to another”, while
cohesion is “the degree of connectivity among the elements of a single module”.

However, these original notions of coupling and cohesion do not take the
direction of the dependencies into account. In particular, in relation to object-
oriented design, these original ideas have been extended and new principles
and related metrics have been devised to guide the design of software systems.

The first part of this chapter is about types of diagrams that show the
structure of an architecture. Then we shall look at some approaches that can
be used to extract and visualize architectural information from the source
code of a system. Finally, the use of 3D and dynamic software architecture
visualization is discussed.

3.4 Visualizing Software Architectures 57

3.4.1 Some Familiar Architectures

We first look at some diagrams of some basic architectures widely used in
software systems:

Filter1 Filter2 Filter3Filter1 Filter2 Filter3

Fig. 3.23. Pipes and filters

Pipes and filters (Fig.3.23): Filters receive a stream of input data and
produce a stream of output data. Pipes pass the output data of one filter as
input data to the next one. The Infopipes notation extends the pipe metaphor
with buffers, pumps, split and merge tees, etc. to design distributed streaming
applications [BHK+02].

CoreCoreCore

Core

Basic Utilities

Application

User Interface

CoreCoreCoreCore

Core

Basic Utilities

Application

User Interface

Core

Basic Utilities

Application

User Interface

Core

Fig. 3.24. Layered systems

Layered Systems (Fig.3.24): The functionality of a system is organized
into several layers. In a purely layered system, the functionality of one layer is
implemented by the functionality provided by the layer directly below. Very
often, layered systems also allow access to some of the other layers below.
One can use both horizontal layers or an onion model. In the first case all
layers have the same size, whereas the onion model emphasizes that the core
is smaller than the outer layers.

Blackboard

Process2

Process3Process1

Process4

Blackboard

Process2

Process3Process1

Process4

Fig. 3.25. Blackboard

Blackboards (Fig.3.25): In the blackboard architecture, there are multiple
units that share data through a blackboard. Typically, the units can read and
write to the blackboard. So for example, the blackboard might contain both
tasks to be computed and results of previously computed tasks.

58 3 Static Program Visualization

A Web search with a search engine such Google for images related to
the term software architecture reveals a wealth of different styles for drawing
architecture diagrams. Most of these use ad hoc visual representations, and
the semantics of the colors, nodes, icons, lines, and arrows is often unclear.
To remedy this situation somewhat, one can follow general rules for the use
of connectors, icons, text, color, etc. On the basis of a study of software
architecture diagrams found on the Web, Koning et al. compiled a list of
guidelines for drawing architecture diagrams [KDvV02]. But when it comes
to building large systems with many developers, a common understanding of
the architecture diagrams is key, and standardized graphical notations such
as UML promise to be the solution.

3.4.2 The Unified Modeling Language (UML)

UML is a set of graphical notations for modeling software systems. It com-
bines the methods of Booch, Rumbaugh and Jacobsen. Each of these three
famous software engineers, sometimes called the “Three Amigos”, had devel-
oped a different popular design method consisting of a graphical notation and
a process for developing a design. To end what was called a “method war”
they decided to merge their methods, and in 1997 they proposed UML to
the Object Management Group (OMG) as a standard for modeling software
systems.

UML provides a considerable number of different types of diagrams, in-
cluding use case diagrams, class and object diagrams, behavior diagrams (stat-
echart diagrams and activity diagrams), interaction diagrams (sequence dia-
grams and collaboration diagrams), implementation diagrams (component di-
agrams and deployment diagrams), and model-management diagrams (pack-
ages, subsystems, and models). In the following, we look only at a very small
subset of UML.

In the class diagram in Fig. 3.26, classes and objects are represented by
framed boxes; additionally, to mark objects, the object’s name is underlined.
An arrow from a class A to a class B means that A inherits from B. A dotted
arrow from an object to a class means that the object is an instance of the
class. Inside the boxes, properties (attributes and operations) of the class can
be declared additionally.

In addition to the inheritance relation, other relations are possible between
classes. One important relation is aggregation. “Class A aggregates class B”
means that objects of class A can contain objects of class B. Normally this
happens because the value of an attribute in A contains an object or many
objects of class B. Aggregation is represented by an edge which starts with a
diamond on the side of the aggregating class. Additionally, one can determine
how many objects will be aggregated (the multiplicity), indicated by numbers
or intervals: 1..n, n..k, 1..*, *.

As another example of a UML diagram type, consider the sequence dia-
gram in Fig. 3.27. This shows the time lines of four communicating objects.

3.4 Visualizing Software Architectures 59

Car

power

drive()

Car

power

drive()

TireTire
has1 1..4

<<instance of>>

Vehicle

wheels

move()

Vehicle

wheels

move()

myCar:Car

power=100

myCar:Car

power=100

Wheel

radius

turn()

has1 1..n

Fig. 3.26. UML class and object diagram

Time proceeds from top to bottom. First, the object customer sends the
message select product to the object store. Next, it sends the message
order product, and at the same time, when it receives this event, the ob-
ject store sends the event order balance to the object customerAccount. A
sequence diagram shows one possible sequence of messages between objects.

customer store

select product

send product

order product check balance

transfer money

storeAccountcustomerAccount

send money

money received

customer store

select product

send product

order product check balance

transfer money

storeAccountcustomerAccount

send money

money received

Fig. 3.27. A UML sequence diagram

60 3 Static Program Visualization

UML diagrams are composed from a small set of graphical primitives: ba-
sically, these consist of text, boxes, lines, and arrows. As a result, designers
can easily draw UML diagrams by hand without colored pencils and stencils.
Despite the widespread use of this method, the visual efficiency of these dia-
grams is low. In recent user studies, geons have been used to draw diagrams
of software architectures [IW00, IWT01]. The geons are a collection of 24
primitive, viewpoint-invariant 3D objects, which means that they are easy to
recognize even when projected into 2D. Several experiments with computer
science students showed that the subjects could visually analyze geon dia-
grams much faster and with more accuracy, and that they could recall them
better in comparison with equivalent UML diagrams. Figure 3.28 shows a
UML diagram and a geon diagram of a car. A car inherits from “conveyance”
and consists of a motor and several wheels. Note that, unlike typical UML
diagrams, in the geon diagram the geons of the aggregated classes are also
drawn, in a reduced size, within the geon representing the aggregating class.

Fig. 3.28. UML versus geon diagrams

3.4.3 Software Metrics

You can’t control what you can’t measure!
[DeM82]

Not everything that counts can be counted and not everything that is
counted counts.

(Albert Einstein)

The IEEE Standard 1061 [IEE98] defines a software quality metric as “a
function whose inputs are software data and whose output is a single numerical
value that can be interpreted as the degree to which software possesses a given

3.4 Visualizing Software Architectures 61

attribute that affects its quality.” Many metrics3 have been suggested to assess
the quality of software and its development process.

Typical metrics with respect to the static structure of the program code of
a software product are its size in terms of lines of code, the number of functions
or classes, or its complexity in terms of graph-theoretical measures such as the
classical and widely used metric is cyclomatic complexity of McCabe [McC76].
On the basis of the control-flow graph G = (V, E) of a program, the cyclomatic
complexity is CC = |E| − |V | + 2|U |, where U is the set of unconnected
subgraphs of G.

D
up

lic
at

io
n

D
eg

re
e

S
ty
le

Err
or

C
od

e
Vio

la
tio

ns

E
rro

r P
ro

ne
ne

ss

La
ck

of
Tes

t C
ov

er
ag

e

P
ac

ka
ge

D
es

ig
n

D
is
ta

nc
e

La
ck

of
Ja

va
do

c

C
od

e
C
om

pl
ex

ity

S
ou

rc
e

S
iz
e

Fig. 3.29. Visualizing multiple software metrics as a bar chart

Other metrics, such as number of successful test runs and test coverage,
address the dynamic behavior of the software. Figure 3.29 shows the bar chart
for multiple software metrics computed for a software system. The spider
diagram in Fig. 3.30 was produced for the same data with the open source
Xradar tool [XRa]. Finally, metrics related to the software process measure
the effort required in terms of staff, time, and costs, as well as the quality of
the process in terms of reported and fixed bugs.

3 In mathematical measurement theory, the term metric is used for a more restricted
concept, namely distance functions.

62 3 Static Program Visualization

Fig. 3.30. Visualizing multiple software metrics as a spider diagram

Metrics differ not only in what they measure, but also in the scales against
which measurement is performed. In general, there are two kinds of scales:
categorial and quantitative. Whereas the former use symbolic values, also
called categories, the latter use numeric values.

Nominal scales assign categories that can only be tested for equality. As
an example of a two-valued nominal scale, consider { tested, untested },
which could be used to measure whether a function has been tested or not.
If we have this metric for each function in a program, we can compute the
frequency of each value, i.e. how many functions have been tested or not.

Ordinal scales have a total order on their categories, for example untested
< partially tested < completely tested.

Interval scales assign numbers such that the distance between these num-
bers has a meaning. Complexity measures such as McCabe complexity are
examples of interval scales. There is no zero value, and it does not make sense
to say that a program is twice as complex as another one if its McCabe value
is twice as large.

In contrast, in a ratio scale there has to be an absolute zero that is mean-
ingful, for example the number of programmers that are trying to fix a bug. It
makes sense to say that no programmer is working on the bug, or that twice
as many programmers have been working on this bug during this month than
during last month.

3.4 Visualizing Software Architectures 63

The choice and interpretation of metrics is full of problems [KB04, VW93,
ZB89] that are beyond the scope of this book.

In the rest of this chapter, software metrics will be applied to one version
of a software system. In Sect. 5.1, we shall also look at the change of software
metrics over time.

3.4.4 Software Visualization and Reverse Engineering

Reverse engineering is the process of analyzing a subject system to
create representations of the system at a higher level of abstraction.

[CI90]

The goal of reverse engineering is to recover design abstractions from the
implementation on the basis of the source code, the documentation, and do-
main knowledge. Many reverse-engineering tools present their results in graph-
ical notations that were originally developed for the design of software sys-
tems before actually programming them. Thus, there are numerous tools that,
given the source code of a program, generate UML class diagrams and some
other UML diagram types, for example Borland Together, Rational Rose,
ESS-Model, BlueJ, and Fujaba. Fujaba also detects design patterns and ex-
tends the UML diagrams by indicating what roles the various classes play in
the pattern.

Eichelberger [Eic03] has compiled a list of 15 aesthetic criteria to be used
for layout of UML class diagrams. He evaluated the automatic layout of 42
current computer-aided software engineering (CASE) tools [Eic02]. He con-
cluded, that “the tools usually produce horrible results by transforming the
layout and implicitly and accidentally changing the semantics of the complete
diagram.” While tools such as those listed above use mediocre layout algo-
rithms based on hierarchical layout (for example, see Figure 3.31), recently two
orthogonal layout algorithms using the shape-metrics approach have been de-
veloped [EGK+04]. These algorithms yield better results for UML diagrams
that have only a small number of inheritance edges but a large number of
associations. Both algorithms have been leveraged by providing plug-ins to
major commercial software design tools. Figure 3.32 shows a layout of the
same diagram as in the previous example but was produced with one of these
plug-ins.

Class Blueprints

Instead of producing UML diagrams from the source code of a system, one can
also produce other kinds of diagrams. Class blueprints show the call graphs
within classes and those between classes [LD01]. They are one of several vi-
sualizations offered by the CodeCrawler tool [Lan].

First of all, the methods of a class are grouped into four layers, and a fifth
layer contains the attributes of the class. The initialization layer contains all

64 3 Static Program Visualization

PQNodeRoot

+type()
+status()
+mark()
+setInternal()
+getInternal()
+setKey()
+getKey()
+setNodeInfo()
+referenceParent()
+referenceChild()
+putSibling()
+pertChildCount()
+parentType()
+parent()
+childCount()
+identificationNumber()
+getNextSib()
+getSib()
+getNodeInfo()
+getEndmost()
+endmostChild()
+~PQNode()

-m_pertLeafCount : int
-m_pertChildCount : int
-m_parentType : int
-m_identificationNumber : int
-m_debugTreeNumber : int
-m_childCount : int

PQNode

T, X, Y

+type()
+status()
+mark()
+setInternal()
+getInternal()
+setKey()
+getKey()
+~PQInternalNode()
+PQInternalNode()

-m_type : int
-m_status : int
-m_mark : int

PQInternalNode

T, X, Y

+type()
+status()
+mark()
+setInternal()
+getInternal()
+setKey()
+getKey()
+~PQLeaf()
+PQLeaf()

-m_status : int
-m_mark : int

PQLeaf

T, X, Y

+PQBasicKeyRoot()
+PQBasicKeyRoot()

PQBasicKeyRoot

+userStructInterna...()
+userStructInfo()
+userStructKey()
+setNodePointer()
+print()
+nodePointer()
+PQBasicKey()
+PQBasicKey()

-m_printString : string(idl)

PQBasicKey

T, X, Y

+userStructInterna...()
+userStructInfo()
+userStructKey()
+~PQInternalKey()
+PQInternalKey()

PQInternalKey

T, X, Y

PQBasicKey<T,X,Y>

+userStructInterna...()
+userStructInfo()
+userStructKey()
+~PQNodeKey()

-m_userStructInfo : X

PQNodeKey

T, X, Y

+userStructKey()
+userStructInterna...()
+userStructInfo()
+~PQLeafKey()

-m_userStrcutKey : T

PQLeafKey

T, X, Y

+~PQTreeRoot()
+PQTreeRoot()

PQTreeRoot

+removeBlock()
+printNode()
+createNodeAndCopyFullChildren()
+checkChain()
+addLeavesRunThrough()
+clientPrintType()
+clientPrintStatus()
+clientPrintNodeCategories()
+clientSibRight()
+clientSibLeft()
+clientNextSib()
+clientRightEndmost()
+clinetLeftEndmost()
+partialChildren()
+fullChildren()
+removeNodeFromTree()
+removeChildFromSibling()
+linkChildrenOfQNodes()
+exchangeNodes()
+destroyNode()
+checkIfOnlyChild()
+addNodeToNewParent()
+templateQ3()
+templateQ2()
+templateQ1()
+templateP6()
+templateP5()
+templateP4()
+templateP3()
+templateP2()
+templateP1()
+templateL1()
+Reduce()
+Bubble()
+Reduction()
+Initialize()
+clientDefinedEmptyNode()
+CleanNode()
+front()
+emptyNode()
+addNewLeavesToTree()

-m_numberOfLeaves : int
-m_identificationNumber : int

PQTree

T, X, Y

PQTree<edge,indinfo*,bool>
PQTree<T,whainfo*,Y>

+ReplacePartialRoot()
+ReplaceFullRoot()
+front()
+clientPrintStatus()
+clientNextSib()
+clinetRightEndmost()
+clientLeftEndmost()
+clientSibRight()
+clientSibLeft()
+Reduction()
+ReplaceRoot()
+Initialize()
+clientDefineEmptyNode()
+emptyAllPertinentNodes()
+~EmbedPQTree()
+EmbedPQTree()

EmbedPQTree

+ReplacePartialRoot()
+ReplaceFullRoot()
+Reduction()
+ReplaceRoot()
+Initialize()
+emptyAllPertinentNodes()
+~PlanarPQTree()
+PlanarPQtree()

PlanarPQTree

+sumPertChild()
+alpha1beta1Number()
+hNumQNode()
+aNumQNode()
+haNumQNode()
+haNumPNode()
+markPertinentChilden()
+setAchilden()
+setHchild()
+findMinWHASequence()
+GetParent()
+Bubble()
+determineMinRemoveSequence()
+clientDefinedEmptyNode()
+CleanNode()
+~MaxSequencePQTree()
+MaxSequencePQTree()

MaxSequencePQTree

T, Y

MaxSequencePQTree<edge,bool>

+removeEliminatedLeaves()
+ReplacePartialRoot()
+ReplaceFullRoot()
+Reduction()
+ReplaceRoot()
+Initialize()
+~PlanarSubgraphPQTree()
+PlanarSubgraphPQTree()

PlanarSubgraphPQTree

+entireEmbed()
+doEmbed()
+doTest()
+preparation()
+planarEmbed()
+planarityTest()
+~PlanarModule()
+PlanarModule()

PlanarModule

+planarize()
+call()
+~FastPlanarSubgraph()
+FastPlanarSubgraph()

FastPlanarSubgraph

PQNode<edge,indinfo*,bool>

+setInternal()
+getInternal()
+setKey()
+getKey()
+mark()
+status()
+type()
+~EmbedIndicatore()
+EmbedIndicator()

EmbedIndicator

+defaultValues()
+~whaInfo()
+whaInfo()

-m_notVisitedCount : int
-m_pertLeafCount : int
-m_deleteType : int
-m_a
-m_w
-m_h

whainfo

PQNodeKey<edge,indinfo*,bool>

PQNodeKey<edge,whainfo*,bool>

PQLeafKey<edge,X,bool>

+print()
+~embedKey()
+embedKey()

embedKey

+print()
+~whaKey()
+whaKey()

whaKey

+print()
+~PlanarLeafKey()
+PlanarLeafKey()

PlanarLeafKey

X

Fig. 3.31. Automatic layout produced by an industrial CASE tool (c©2003 ACM)

methods with the substring init or initialize, and all constructor methods.
The interface layer contains all methods invoked from the initialization layer,
and all public methods and methods not invoked by other methods in the same
class. The implementation layer contains all private methods and methods
invoked by other methods of the same class. The accessor layer contains all
methods to get and set values of attributes, and, finally, the attributes layer
contains all attributes of the class

On the basis of these layers, the static call graph within a class is drawn as
shown in Fig. 3.33. Boxes represent the methods, and the sizes of these boxes
can represent some metrics, for example the number of lines. In addition,
the following color-coding scheme is used: brown boxes represent overridden
methods, yellow boxes represent delegating methods, cyan boxes represent

3.4 Visualizing Software Architectures 65

PQNodeRoot

+type()

+status()

+mark()

+setInternal()

+getInternal()

+setKey()

+getKey()

+setNodeInfo()

+referenceParent()

+referenceChild()

+putSibling()

+pertChildCount()

+parentType()

+parent()

+childCount()

+identificationNumber()

+getNextSib()

+getSib()

+getNodeInfo()

+getEndmost()

+endmostChild()

+~PQNode()

-m_pertLeafCount : int

-m_pertChildCount : int

-m_parentType : int

-m_identificationNumber : int

-m_debugTreeNumber : int

-m_childCount : int

PQNode

T, X, Y

+type()

+status()

+mark()

+setInternal()

+getInternal()

+setKey()

+getKey()

+~PQInternalNode()

+PQInternalNode()

-m_type : int

-m_status : int

-m_mark : int

PQInternalNode

T, X, Y

+type()

+status()

+mark()

+setInternal()

+getInternal()

+setKey()

+getKey()

+~PQLeaf()

+PQLeaf()

-m_status : int

-m_mark : int

PQLeaf

T, X, Y

+PQBasicKeyRoot()

+PQBasicKeyRoot()

PQBasicKeyRoot

+userStructInterna...()

+userStructInfo()

+userStructKey()

+setNodePointer()

+print()

+nodePointer()

+PQBasicKey()

+PQBasicKey()

-m_printString : string(idl)

PQBasicKey

T, X, Y

+userStructInterna...()

+userStructInfo()

+userStructKey()

+~PQInternalKey()

+PQInternalKey()

PQInternalKey

T, X, Y

PQBasicKey<T,X,Y>

+userStructInterna...()

+userStructInfo()

+userStructKey()

+~PQNodeKey()

-m_userStructInfo : X

PQNodeKey

T, X, Y

+userStructKey()

+userStructInterna...()

+userStructInfo()

+~PQLeafKey()

-m_userStrcutKey : T

PQLeafKey

T, X, Y

-Ende3

*

-Ende4

*

-Ende5

*

-Ende6

*

-Ende7

* -Ende8 *

-Ende9

*

-Ende10

*

+~PQTreeRoot()

+PQTreeRoot()

PQTreeRoot

+removeBlock()

+printNode()

+createNodeAndCopyFullChildren()

+checkChain()

+addLeavesRunThrough()

+clientPrintType()

+clientPrintStatus()

+clientPrintNodeCategories()

+clientSibRight()

+clientSibLeft()

+clientNextSib()

+clientRightEndmost()

+clinetLeftEndmost()

+partialChildren()

+fullChildren()

+removeNodeFromTree()

+removeChildFromSibling()

+linkChildrenOfQNodes()

+exchangeNodes()

+destroyNode()

+checkIfOnlyChild()

+addNodeToNewParent()

+templateQ3()

+templateQ2()

+templateQ1()

+templateP6()

+templateP5()

+templateP4()

+templateP3()

+templateP2()

+templateP1()

+templateL1()

+Reduce()

+Bubble()

+Reduction()

+Initialize()

+clientDefinedEmptyNode()

+CleanNode()

+front()

+emptyNode()

+addNewLeavesToTree()

-m_numberOfLeaves : int

-m_identificationNumber : int

PQTree

T, X, Y

PQTree<edge,indinfo*,bool> PQTree<T,whainfo*,Y>

+ReplacePartialRoot()

+ReplaceFullRoot()

+front()

+clientPrintStatus()

+clientNextSib()

+clinetRightEndmost()

+clientLeftEndmost()

+clientSibRight()

+clientSibLeft()

+Reduction()

+ReplaceRoot()

+Initialize()

+clientDefineEmptyNode()

+emptyAllPertinentNodes()

+~EmbedPQTree()

+EmbedPQTree()

EmbedPQTree

+ReplacePartialRoot()

+ReplaceFullRoot()

+Reduction()

+ReplaceRoot()

+Initialize()

+emptyAllPertinentNodes()

+~PlanarPQTree()

+PlanarPQtree()

PlanarPQTree

+sumPertChild()

+alpha1beta1Number()

+hNumQNode()

+aNumQNode()

+haNumQNode()

+haNumPNode()

+markPertinentChilden()

+setAchilden()

+setHchild()

+findMinWHASequence()

+GetParent()

+Bubble()

+determineMinRemoveSequence()

+clientDefinedEmptyNode()

+CleanNode()

+~MaxSequencePQTree()

+MaxSequencePQTree()

MaxSequencePQTree

T, Y

MaxSequencePQTree<edge,bool>

+removeEliminatedLeaves()

+ReplacePartialRoot()

+ReplaceFullRoot()

+Reduction()

+ReplaceRoot()

+Initialize()

+~PlanarSubgraphPQTree()

+PlanarSubgraphPQTree()

PlanarSubgraphPQTree

+entireEmbed()

+doEmbed()

+doTest()

+preparation()

+planarEmbed()

+planarityTest()

+~PlanarModule()

+PlanarModule()

PlanarModule

-Ende11

*

-Ende12

*

-Ende13 *

-Ende14 *

+planarize()

+call()

+~FastPlanarSubgraph()

+FastPlanarSubgraph()

FastPlanarSubgraph

-Ende11

*

-Ende12

*

PQNode<edge,indinfo*,bool>

+setInternal()

+getInternal()

+setKey()

+getKey()

+mark()

+status()

+type()

+~EmbedIndicatore()

+EmbedIndicator()

EmbedIndicator

-Ende15*

-Ende16

*

+defaultValues()

+~whaInfo()

+whaInfo()

-m_notVisitedCount : int

-m_pertLeafCount : int

-m_deleteType : int

-m_a

-m_w

-m_h

whainfo

-Ende17 *

-Ende18 *

-Ende19

*

-Ende20

*

PQNodeKey<edge,indinfo*,bool>PQNodeKey<edge,whainfo*,bool>

PQLeafKey<edge,X,bool>

+print()

+~embedKey()

+embedKey()

embedKey

+print()

+~whaKey()

+whaKey()

whaKey

+print()

+~PlanarLeafKey()

+PlanarLeafKey()

PlanarLeafKey

X

-Ende21

*

-Ende22

*

-Ende23

*

-Ende24

*

-Ende25*

-Ende26

*

-Ende27

*

-Ende28

*

Fig. 3.32. Automatic layout produced by GoVisual (c©2003 ACM) [GJK+03b]

abstract methods, and orange boxes represent extending methods. Black ar-
rows indicate invocations of methods, while cyan arrows show invocations of
accessor methods or direct access of an attribute

The blueprints of individual classes are then arranged in an inheritance
tree and additional arrows show method invocations between classes (see
Fig. 3.34).

On the basis of class blueprints, Lanza and Ducasse categorized classes
delegator classes or as classes with a large implementation or a wide interface,
for example. Taking inheritance into account, they also distinguished definers,
overriders, and extenders. Definers are those classes that define mostly new
methods, overriders are those that mostly override methods, and extenders
are those that mostly extend methods.

In addition, overriders and extenders can be talking, which means that
they invoke methods of a superclass, or mute, which means that they do not
invoke methods of a superclass.

66 3 Static Program Visualization

Initialization Interface Implementation Accessor AttributesInitialization Interface Implementation Accessor Attributes

Fig. 3.33. Class blueprint of a single class

Fig. 3.34. Inheritance and class blueprints

Iterative Analysis and Aggregation

One of the first reverse-engineering tools that provided sophisticated visual-
izations was RIGI [MOTU93]. It basically parses the source code and builds
an initial graph model (called the resource-flow graph). The user can explore
this graph and semiautomatically identify subsystems.

This approach has motivated the design of many other visual reverse-
engineering tools. Tools such as GOOSE [Goo], Sotograph [Sof], SHriMP [Chib],
and VizzAnalyzer [PLL04] work on the class and method levels but the in-
formation can be aggregated to form higher levels of abstractions. Graphs, as
well as metrics computed for these graphs, are stored in a repository. Graphs
can be extracted from the repository and are typically drawn with force-based
or energy-based layout methods, which lead to many edge crossings but help
to detect clusters. The user can perform various analyses on the graphs, create
new graphs, etc., and thus iteratively refine the model as shown in Fig. 3.35.

3.4 Visualizing Software Architectures 67

Their generality is both the strength and the weakness of the above-
mentioned reverse-engineering tools as well as many others, because it makes
them very difficult to use.

Aggregation is one of the main operations used to form graphs at higher
levels of abstraction. Assume we have a graph G = (V, E), where V is a set
of nodes and E ⊆ V ×D × V is a set of edges, and where D is a set of labels
which carry some information. In other words, if (v1, d, v2) ∈ E then d is
the information associated with the edge. The simplest form of aggregation is
edge aggregation. Here we combine several edges into one. Assume we have
an aggregation function α : P(D) −→ D′; we obtain an aggregated graph
Gα = (V, Eα), where

Eα = {(v, α({d1, . . . , dn}), w)|(v, d1, w), . . . , (v, dn, w) ∈ E}

source code

documentation

etc.

repository
analyses

analyses

visualization

tools

Fig. 3.35. Typical architecture of reverse-engineering tools

Often the information associated with the edges is a weight, i.e. some numeric
value, and the aggregation function simply sums these values.

To form subsystems, one partitions the set of nodes and aggregates all
edges between different partitions. Assume that π : V −→ V ′ is a surjective
function and V ′ ⊆ P(V) is a partition of V , i.e. all sets in V ′ are disjoint, and
π(v) = v′ ∈ V ′ such that v ∈ v′. For simplicity we assume that there is at
most one edge between two nodes. The partitioned, aggregated graph is then
Gα

π = (V ′, Eα
π), where

Eα
π = { (v′, α({d1, . . . , dn}), w′)|v′, w′ ∈ V ′ and

(v1, d1, w1), . . . , (vn, dn, wn) ∈ E where π(vi) = v′ and π(wi) = w′}

Creole

As an example, we take a closer look at Creole [Chia], an open-source plug-
in for the Eclipse interactive development environment (IDE) which lever-
ages the SHriMP approach by integrating it into a widely used development

68 3 Static Program Visualization

environment. SHriMP (Simple Hierarchical Multi-Perspective) visualizes de-
pendencies in hierarchically structured data as nested graphs. While SHriMP
requires the results of analyses presented in specific graph exchange formats as
input, with Creole, analyzing and visualizing dependencies in a Java package
or a file is as simple as dragging it into the Creole window.

Automatic layout

Manual layout

Automatic layout

Manual layout

Fig. 3.36. Creole: package dependencies via method calls and field access

In the following, we describe the use of Creole to explore the structure of
an implementation of the computation and layout technique for control-flow
graphs presented in Sect. 3.2.2.

Assume that VC is the set of classes (p, c), where p is the name of a package
and c is the name of a class in p. The call graph Gcall = (VC , Ecall) has edges

Ecall = {((p, c), 1, (p′, c′))| a method in class c of package p invokes
a method in class c′ of package p′}.

Analogously, the access graph Gaccess = (VC , Eaccess) has edges

Eaccess = {((p, c), 1, (p′, c′))| an expression in class c of package p accesses
a field in class c′ of package p′}.

3.4 Visualizing Software Architectures 69

We obtain an aggregated graph of (VC , Ecall ∪ Eaccess) on the package level
with the function π((p, c)) = p and the aggregation function α(d1, . . . , dn) =∑

di.
Figure 3.36 shows the dependencies of the top-level package cfg, which

contains three subpackages and two classes. Here the arrows represent the
aggregated method calls and field accesses between classes in each package.

Fig. 3.37. Creole: method calls and object creation

Although the package diagram is based on method calls and field accesses,
we can get a better impression of how the packages collaborate by looking at
method calls and object creation as shown in Fig. 3.37. The two classes in the
highest layer call methods of classes in the middle layer, which in turn call
methods in the lowest layer, but, more importantly, create many objects of
classes in the lowest layer, indicated by the yellow edges.

Creole allows one to interactively expand packages and classes and select
the kinds of nodes and edges to be shown:

70 3 Static Program Visualization

Fig. 3.38. Creole: overriding and extending methods

3.4 Visualizing Software Architectures 71

• A node represents one of the following software artifacts: a class, a constant
(static final), a constructor, a field, an initializer, an interface, a method,
a package, a package root, or a project.

• An edge represents a relation between two nodes. The kinds of relations
depend on the kinds of nodes, i.e. the software artifacts represented by
the nodes. The possible relations are: “accesses”, “calls”, “casts to type”,
“contains”, “creates”, “extended by”, “extended by (interface)”, “has pa-
rameter type”, “has return type”, “implemented by”, “is of type”, and
“overridden by”.

In Fig. 3.38 the green edges indicate which methods of class SyntaxNode
are extended by other classes in the package cfg.syntax, while red edges
indicate those which have been overridden.

3.4.5 3D and Software Architecture

Many arguments have been put forward speculating that 3D visualizations
are superior to two-dimensional ones,4 including those that we will discuss
later in Sect. 4.4.5. Ware and Franck [WF94] have argued that the amount of
information that can be perceived in a three-dimensional display exceeds that
in a two-dimensional display by a factor of three. Motivated by results such as
this and the advance of technology, many researchers have suggested 3D visu-
alizations of software architectures and even the use of virtual environments
to allow one to literally walk through these architectures.

Gogolla et al. suggested several scenarios where UML diagrams can benefit
from a three-dimensional layout [GRR99, RG00]. They illustrated these sce-
narios by 3D UML diagrams that they implemented using the Virtual Reality
Modeling Language (VRML):

• In a class diagram, important classes are drawn in the foreground and
thus have the focus. Moreover, one can have several different perspective
views of the same diagram. In each of the perspectives the focus is on
different classes, and when the user changes the perspective the nodes of
the diagram are moved by smooth animation to their new positions.

• In object diagrams, various shapes can be used to represent objects. Ob-
jects of the same class have similar shapes.

• For sequence diagrams, animations show messages represented by small
balls that move from the sender to the receiver. The problem of over-
lapping arrows for simultaneously sent messages and of arrows crossing
lifelines can also be solved by 3D layout. Unfortunately, projecting these
3D visualizations onto 2D computer screens leads to other kinds of over-
laps and crossings. Figure 3.39 shows a 3D version of the sequence diagram
in Fig. 3.27.

4 Some of these have been empirically invalidated. For example, recent studies show
that perspective effects in monocular static computer displays do not significantly
influence the effectiveness of spatial memory [CM01, CM02].

72 3 Static Program Visualization

• Several diagrams can be combined in space. For example, a class diagram
may be shown in the background and a related sequence diagram in the
foreground.

Fig. 3.39. Three-dimensional sequence diagram

X3D-UML is an approach to automatically producing 3D UML diagrams
from source code [MHvS05]. First the source code is converted into an XML
representation, and then XSLT scripts extract the relevant information from
this representation and produce X3D models (X3D stands for “extensible 3D”,
the XML-based successor to VRML).

Imsovision [MLMD01] is a system that shows a stereoscopic 3D visualiza-
tion of classes, their properties, and their dependencies and aggregations in a
virtual-reality environment, namely a cave. As the cave is a room where the
visualization is rear-projected onto its walls, the user can enter the room and
interact with the 3D scene. In Imsovision, classes are represented by platforms,
methods by columns, and attributes by spheres put on top of the platforms.
The platforms of subclasses are placed next to their superclasses. Dependen-
cies and aggregations are shown as flat edges. In addition, various properties
are represented by colors.

3.4 Visualizing Software Architectures 73

Fig. 3.40. 3D architecture visualization produced with Vizz3D

A very similar approach, called Software Landscapes was recently de-
veloped by Balzer et al. [BNDL04]. This representation uses more realistic
metaphors, such as islands instead of platforms and skyscrapers instead of
simple columns.

In the Software World [KM99] visualization, the world represents the soft-
ware system as a whole, a country represents a package, a city represents
a file, a district within a city represents a class, and a building represents a
method. The size of a building indicates the number of lines of code, the doors
represent its parameters, the windows represent the variables declared in the
method, and the color of the building indicates whether the method is private
or public.

Panas et al. have suggested that dynamic information should also be in-
cluded in such a visualization [PBG03], for example hot-execution areas can
be surrounded by fire, two-directional calls can be represented by streets, and
unidirectional calls can be represented by water (rivers). Information is sent
via boats or cars between classes or packages.

74 3 Static Program Visualization

Figure 3.40 shows the first steps towards automatically generating such a
visualization using the open-source tool Vizz3D [Viz]. Houses represent func-
tions, and edges indicate function calls. The size of a house corresponds to the
number of lines of code. Similarly to information pyramids (see Sect. 2.3.3),
the platforms represent directories or files containing functions. Icons show ad-
ditional information, for example a garbage can indicates dead code, a wheel
indicates access to global variables, and a lock indicates security issues. Flames
used as icons and as textures of houses indicate that the McCabe’s cyclomatic
complexity exceeds a threshold.

3.5 Summary

Graphical representations of program code have been used since the early days
of computer science. Whereas Nassi–Shneiderman diagrams encode relations
between program parts by containment, all other representations described in
this chapter do so by linkage, i.e. the program parts are represented by nodes
and the relations by edges between these nodes.

Except for control-structure diagrams, no graphical representation pre-
serves the linear order of the underlying source code, and this makes it hard
for the programmer to map graphical elements to parts of the program code.
Fortunately, the sequential order in the code becomes less important for rep-
resentations at higher levels of abstraction such as call graphs. Whatever the
graphical representation of the program structure is, it can be enriched using
information from static program analyses and thus help to debug or improve
the program code.

While UML is widely used for the design of software architectures, non-
standard graph-based notations prevail for recovering various aspects of the
software architecture of a given system. Automatic and semiautomatic ag-
gregation of nodes and edges in these graphs is an important technique for
forming architecture diagrams at higher levels of abstraction.

Recently, three-dimensional visualizations of software architectures have
taken real-world metaphors literally. The resulting visualizations are very ap-
pealing and may help in the future to convey architectural information to
nonexperts.

Exercises

Exercise 1: Software is big! Assume that a line of code (LOC) has a height
of 0.5 cm when printed out on a sheet of paper. How many kilometers
would the printed program code of Windows 3.1 (3 million LOC, 1990),
Windows XP (50 million LOC, 2002) and Debian Linux 3.1 (210 million
LOC, 2005) cover?

Exercises 75

X==1

X = 0 X = 1

Y==1 X = 2

T

T F

F

Fig. 3.41. Control-flow graph for Exercise 2

Exercise 2: Write a program for which we would get the control-flow graph
shown in Fig. 3.41.

Exercise 3: Draw the control-flow graph and the Nassi–Shneiderman diagram
of the following program:

x=0;
odd=0;
even=0;
while (x<100)
{ if (x%2==0)

even=even+1;
else
odd=odd+1;

x=x+1; }

Exercise 4: Give all computation rules (informal and formal) for cfg() and
box() of the do {S } while(E) statement.

Exercise 5: Compute the live variables for the control-flow graph in Fig. 3.20
and annotate the nodes of the graph.

Exercise 6: Search for architecture diagrams on the Web and identify familiar
architectures therein.

Exercise 7: Below you will find excerpts from the Java source code of a pro-
gram that controls a pet door. The pet door detects animals wearing a
collar key. The collar key electronically transmits an ID. The pet door
opens and closes automatically for registered pets. For this program draw
three different diagrams:

76 3 Static Program Visualization

• Draw an architecture diagram using icons and metaphors related to
the application. You can draw the diagram by hand, but you can also
produce it with your computer.

• Draw the UML class diagram with aggregations.
• Draw a class blueprint (no color coding required).

public class Pet
{ int collarKey; String name; }

public class Pets
{ final int maxPets=10;
Pet[] list = new Pet[maxPets];
public boolean contains(int k) { ... }
public Pet get(int k) { ... }
public void add(Pet p) { ... }
public void remove(int k) { ... }

}

public class Door
{ boolean isOpen;
public void isOpen() { return isOpen; }
public void open() { isOpen=true; }
public void close() { isOpen=false; }

}

public class PetDoor extends Door
{ Pets currentPets, registeredPets;
PetDoor(Pets regPets)
{ registeredPets=regPets;

currentPets=new Pets();
isOpen=false; }

public void open() { if (!isOpen) { super.open(); } }

public void collarKeySignalReceived(int k)
{ if (registeredPets.contains(k))

{ Pet p=registeredPets.get(k);
open();
currentPets.add(p); } }

public void collarKeySignalLost(int k)
{ if (currentPets.contains(k))

{ currentPets.remove(k);
close(); } }

}

Exercises 77

Exercise 8: Apply the Creole tool to one of your own software projects. Try
to arrange the packages in the package-level diagram in a meaningful way.
Expand a package and look at the inheritance, overriding, and extend-
ing edges. Can you obtain a visualization similar to the class blueprint
visualization by choosing the appropriate options in the Node Filter?

4

Dynamic Program Visualization

In the previous chapter the visualization of the structure of software at various
levels of abstraction was discussed. Now we shall look at the behavior of pro-
grams, i.e. what actually happens at run time. Dynamic program visualization
shows the behavior of a program for a given input, i.e. what instructions are
executed and how the program state changes (see Fig. 4.1).

Running Program

Read or Written
Memory Contents

Executed
Instruction

Data
Visualization

Code
Visualization

Fig. 4.1. Dynamic program visualization

Ideally, data and code visualization are combined such that the user sees
how the execution of an instruction reads and modifies the memory.

As examples of dynamic program visualization, we shall look in more de-
tail at dynamic architecture visualization, algorithm animation, and visual
debugging and testing.

4.1 Dynamic Data Acquisition

There are many different ways to collect data during the execution of a pro-
gram. Dynamic data acquisition usually slows down the execution of the pro-

80 4 Dynamic Program Visualization

gram and might even change its behavior. So, the choice of the acquisition
method depends on its invasiveness and on the kind of data that has to be
collected.

4.1.1 How Is Runtime Data Collected?

Most often the program is instrumented, i.e. additional instructions are added
to the program code. Instrumentation can be done on the level of both the
source code and the machine code. Instrumentation code can be added before
or after each instruction of the original code, at the start and end of each
loop or each iteration of the loop, at each method call, at the entry and exit
of each method, or at certain program points explicitly specified by the user.
In simple cases, instrumentation code can be inserted by hand, but for real
programs instrumenting the code should be done automatically.

To capture when and how data is accessed and changed, data structures
can be replaced by new ones that capture changes or invoke external routines
(demons) whenever the data structure is accessed. Instead of changing a pro-
gram, one can also have a parallel thread or process that looks for changes
in the program memory. For distributed programs, messages can be recorded.
Finally, the behavior can also be observed by running it on a virtual machine
or interpreter.

A serious problem, at least for embedded systems or distributed programs,
is that instrumentation and also all other approaches to collecting data are
invasive, i.e. they actually change the timing of the execution. Thus, for exam-
ple, deadlocks might not occur in the instrumented program but might occur
in the original one.

4.1.2 What Runtime Data Is Collected?

For code visualization, we need the program position; this might be the actual
line of code, if we use an interpreter, or the value of the program counter or the
address of an invoked method, if we capture at the machine level. For compiled
programs, the mapping of addresses in the compiled program to lines of the
source code is often a problem. Some compilers allow one to store additional
information for debugging in the compiled program, but if the compiler does
optimizations such as sharing code for available expressions, an instruction
in the compiled code can actually correspond to several different parts of the
source code.

For data visualization, typically the values of program variables and the
parameters of method calls or, at a lower level, the values of registers are
recorded. For some purposes parts or even the whole contents of the program
heap might be extracted, as discussed in Sect. 4.5.3. For distributed programs,
not only the messages but also the local time when they were sent and received
at the various computers should be recorded to allow one to reconstruct the
causal order of the messages.

4.1 Dynamic Data Acquisition 81

Note that not only the amount of instrumentation code but also the
amount of data that is captured, and how it is stored, increase the run time
of the program.

4.1.3 Dynamic Data Acquisition in Java

To illustrate some of the above-mentioned approaches, we look at various ways
to gather runtime information in Java.

Enclosing Method Calls If the source code is available, one can enclose
instructions in additional code to notify a tracing object when the instruction
is executed. For example method calls can be modified in order to record when
the method is called and when its execution is finished:

trace.beforeMethodCall("withdraw(int amount)");
account.withdraw(100);
trace.afterMethodCall("withdraw(int amount)");

This approach is very flexible, as one can enclose different kinds of in-
structions, and not every occurrence of an instruction need be enclosed. The
instrumentation of the source code can be automated by using aspect-oriented
programming tools such as AspectJ or InjectJ.

Instrumenting Method Bodies To trace all method calls of a particular
method, the above method would require one to modify all method calls,
which would lead to a large increase in code size and is only possible if the
source code of all classes that contain calls to the method is available. Instead
of modifying the method calls, we can also change the method body by adding
instrumentation code at the start of the method body and before each return
statement in the method body:

void withdraw(int amount)
{ trace.startOfMethod("withdraw(int amount)");
balance=balance-amount;
trace.beforeReturnFromMethod("withdraw(int amount)");
return; }

Method Stubs As the body of a method can be very complex or the source
code might not be available for transformation, one can also create method
stubs that forward the method call to the original method, and all calls to
the original method in the available source code have to be replaced by calls
to the method stub.

void trace_withdraw(int amount)
{ trace.startOfMethod("withdraw(int amount)");
withdraw(amount)
trace.beforeReturnFromMethod("withdraw(int amount)");
return; }

82 4 Dynamic Program Visualization

Byte Code Injection Instead of transforming the source code, the instru-
mentations discussed above can be added to the byte code using Java APIs
such as JikesBT [IBMa] or BCEL [Fou]. This approach is useful in particular
when the source code is not available, which is often the case for third-party
libraries.

Extended JVMs There have been various extensions of the Java Virtual Ma-
chine (JVM) that allow one to access runtime information without changing
the application program. In Java 1.5, the Java Virtual Machine Tool Interface
(JVMTI)1 was introduced to inspect the state and control the execution of
an application at run time. For example, it allows a client program to register
with the JVM to receive events whenever the JVM is initialized or shut down,
objects are allocated or released, methods are called or returned from, threads
are started or stopped, classes are loaded or unloaded, garbage collection is
started or finished, monitors of synchronized methods or objects are entered
or exited, or a thread is waiting to enter a monitor.

4.2 Visualizing Dynamics

Below, we discuss three general approaches to visualizing changes of infor-
mation over time: accumulation, spatial projection, and animation. These
approaches apply to both dynamic data visualization and dynamic code visu-
alization.

4.2.1 Fundamental Techniques

First, information can be accumulated over time. For example, dynamic data
visualization may simply show the average value of a variable, or dynamic
code visualization may show just the number of times an instruction has been
executed. Reducing the changes to a single value seems like a bad choice as
we lose much information, but it is very useful if we want to get an overview
of the changes of many items.

If we focus on a few items, we can plot their values along a time axis,
i.e. we use a spatial representation of temporal information. In the resulting
diagram, we can look for trends and phases during the time period.

Instead of mapping time onto an axis in 2D or 3D space, animated com-
puter graphics enable us to represent time by time. An animation is a sequence
of images which are shown one after another. Each image represents the pro-
gram state at some point during the execution. One problem with animations
is that, at each moment, we see only a single image and have to to rely on our
memory to remember what happened before. For better inspection and for

1 This provides most of the features of the JVM Profiler Interface (JVMPI) and
the JVM Debug Interface (JVMDI) and is meant to replace these.

4.2 Visualizing Dynamics 83

use in textbooks, the images of an animation can be shown next to each other
as in a comic strip. Next we shall illustrate the three approaches by means of
an example.

4.2.2 A First Example

As an example, consider the following program, which does a simple simulation
of annealing by computing the value of each cell in a matrix from the average
of the value of the cell and the values of its neighboring cells:

int m[][]= new int[5][5], m2[][] = new int[5][5];
int old[][]=m, new[][]=m2;
m[2][2]=40; // put a high value in the middle of the matrix

// and all other cells have the initial value 0

for (int t=0;t<4; t++)
{ for(int i=0; i<m.length; i++)

{ for(int j=0; j<m[i].length; j++)
{ int s=old[i][j];
int neighbors=1;
if (i>0) { s=s+old[i-1][j]; neighbors++;}
if (i<old.length-1) { s=s+old[i+1][j]; neighbors++;}
if (j>0) { s=s+old[i][j-1]; neighbors++;}
if (j<old[i].length-1)

{ s=s+old[i][j+1]; neighbors++;}
if ((i>0)&&(j>0)) { s=s+old[i-1][j-1]; neighbors++;}
if ((i>0)&&(j<old[i].length-1))

{ s=s+old[i-1][j+1]; neighbors++; }
if ((i<old.length-1)&&(j>0))

{ s=s+old[i+1][j-1]; neighbors++;}
if ((i<old.length-1)&&(j<old[i].length-1))

{ s=s+old[i+1][j+1]; neighbors++;}
new[i][j]=(int) Math.round(s/(double)neighbors);

}
}

}

A code visualization using accumulation could indicate simply that the
bodies of the first four if statements are executed 80 times, and those of the
remaining four if statements only 64 times. Table 4.1 shows a data visualiza-
tion: the values of the matrix are shown after each iteration. The last entry
shows the result of accumulating all matrix values.

In Fig. 4.2 the values of three matrix elements are plotted along a time
axis. For the middle element a[2][2] the value drops dramatically after the
first iteration: for the outermost element a[0][0], the value slowly increases.
The values of all three elements converge to 2.

84 4 Dynamic Program Visualization

Table 4.1. Values of the matrix during the execution

Initial
Value

First
Iteration

Second
Iteration

Third
Iteration

Fourth
Iteration

Average

0 0 0 0 0
0 0 0 0 0
0 0 40 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 4 4 4 0
0 4 4 4 0
0 4 4 4 0
0 0 0 0 0

1 1 2 1 1
1 2 3 2 1
2 3 4 3 2
1 2 3 2 1
1 1 2 1 1

1 2 2 2 1
2 2 2 2 2
2 2 3 2 2
2 2 2 2 2
1 2 2 2 1

2 2 2 2 2
2 2 2 2 2
2 2 2 2 2
2 2 2 2 2
2 2 2 2 2

1 1 1 1 1
1 2 2 2 1
1 2 11 2 1
1 2 2 2 1
1 1 1 1 1

Fig. 4.2. Values of three matrix elements along a time axis

Fig. 4.3. Animation as a comic strip

Finally, Fig. 4.3 shows the sequential images in an animation. The anima-
tion was produced using floating-point numbers instead of integers for better
precision, and color-coding to represent the values of the matrix elements.

4.3 Dynamic Architecture Visualization 85

4.3 Dynamic Architecture Visualization

The actual behavior of a running software system can be visualized at the
level of its architecture at least in two ways. First, the architecture diagrams
used for its design can be augmented with run time information. Second, on
the basis of run time information behavior diagrams can be computed.

4.3.1 Augmenting Static Diagrams

SoftArch is a visual design tool for software architectures [GH03]. From the
architecture diagrams drawn by the software architect, Java classes are gen-
erated, which can be used as a starting point for the implementation. The
classes generated are automatically instrumented such that they allow one to
capture particular method calls and events at run time. This runtime infor-
mation can be used to analyze the actual implementation of the architecture.
SoftArch aggregates this information and shows it at the level of the design
elements of the architecture. While the implementation runs, SoftArch con-
tinues to capture information and adapts the visualization. It thus extends
the static architecture visualization with dynamic information.

News TickerNews Ticker

Web Server

News

Manager
Stock Price

Manager

Stock Market

Server

News Archive

News Server

Fig. 4.4. Dynamic visualization of software architecture

Figure 4.4 shows a dynamic software architecture diagram similar to ones
produced by SoftArch. In this example, the dynamic information visualized is
the relative number of method calls and the event propagation. The thickness
of the arrows indicates the amount of communication between components,

86 4 Dynamic Program Visualization

the thickness of the border of a component indicates the amount of incoming
communication, and the background color indicates the amount of internal
communication.

4.3.2 Generating Behavior Diagrams

The SHIMBA [SKM01] environment for dynamic architecture visualization
combines and extends the RIGI tool [MOTU93] for static visualization and
the SCED tool [KST98] for dynamic visualization. SHIMBA uses informa-
tion from the static visualization for focusing and abstraction in the dynamic
visualization as follows.

In the static visualization, the user selects software artifacts such as classes
and methods of the subject system. Then the subject system is executed, and
runtime information is captured for the selected artifacts. On the basis of this
runtime information, SHIMBA produces sequence diagrams. On the basis of
the abstractions in the static visualization, i.e. the grouping of software arti-
facts into higher-level components, SHIMBA can also abstract the sequence
diagrams and thus show the interaction among higher-level components.

Fig. 4.5. JavaVis: collaboration diagram showing a deadlock situation

JaVis [Meh02] uses the Java Debug Interface (JDI) to trace the execution
of concurrent programs and to detect deadlock situations. It then accesses

4.4 Algorithm Animation 87

the Together UML tool through an API to draw sequence and collaboration
diagrams of deadlocks. Figure 4.5 shows such a collaboration diagram.

4.4 Algorithm Animation

In this section, we look at algorithm animation as an example of dynamic
program visualization. As mentioned in Sect. 1.5, many authors characterize
algorithm animation as being at a higher level of abstraction than program
visualization. This distinction is very blurry. Most of the systems presented
in this section have been designed to visualize single algorithms, instead of
complete programs, and they have been developed mainly for educational
purposes.

In this section we shall give a short history of algorithm animation, look
at some examples, and then discuss some design issues. Next, some of the
principal architectures of algorithm animation systems are characterized. Fi-
nally, we discuss an approach to the visualization of the abstract execution of
algorithms.

4.4.1 What Is It About?

Algorithm animation is the visualization of the behavior of an algorithm.
The term “animation” stems from the verb “to animate”, which means “to
bring to life”. We refrain from defining the term “algorithm”2 here. There are
just too many formal and informal definitions, and we leave the dispute to
others ([Mos01, Gur00]). No doubt the Church-Turing thesis, which states that
every algorithm can be computed by a Turing machine [Tur36], constitutes
a fundamental insight in computer science, but we certainly do not want to
visualize the execution of all kinds of algorithms on Turing machines. Rather,
we prefer computational models that are closer to the problem to be solved.

In all cases the execution of an algorithm by a real or mathematical ma-
chine leads to a sequence of states. Each step of the algorithm results in a
transition from one state to another. Algorithm animations map each state
into a visual representation (image) and usually show the transitions as ani-
mations between these images (see Fig. 4.6).

If we take a closer look at the implementation of algorithm animation sys-
tems, we often find that there is an intermediate layer. The state is mapped
onto visual models, i.e. graphical objects or geometric data, which are then
rendered to produce the images (see Fig. 4.7). Using this intermediate layer,

2 The term “algorithm” is named after Abu Ja’far Muhammad ibn Musa Al-
Khwarizmi, who wrote around the year 840 a treatise on algebra and a treatise on
arithmetical calculation with Hindu–Arabic numerals. The Arabic text is lost but
a Latin translation, Algoritmi de numero Indorum (Al-Khwarizmi on the Hindu
numerals), gave rise to the word “algorithm” derived from his name in the title.

88 4 Dynamic Program Visualization

State 0

State 1

State 2

State n

Transition 1

Transition 2

Transition n

Image 0

Image 1

Image 2

Image n

Animated Transition 1

Animated Transition 2

Animated Transition n

Execution Mapping Animation

Fig. 4.6. Algorithm animation: mapping states to images

animations can be performed on the image level as before, but the real advan-
tage of this approach is that the animations can be performed by continuous
transformation of a model to a subsequent model. The challenge of algorithm
animation is to find the right models, i.e. appropriate graphical abstractions
for states and transitions between states.

State 0

State 1

State 2

State n

Transition 1

Transition 2

Transition n

Image 0

Image 1

Image 2

Image n

Animated Transition 1

Animated Transition 2

Animated Transition n

Execution Mapping
Visual

Model

Model 0

Model 1

Model 2

Model n

Transform 1

Transform 2

Transform n

AnimationRendering

Fig. 4.7. Algorithm animation: mapping states to models

4.4.2 Why Do People Animate Algorithms?

Different people have different motivations for animating algorithms. These
motivations also place different requirements on the animations and the way
they are produced.

4.4 Algorithm Animation 89

Understanding and teaching: Teachers visualize algorithms to explain them
to their students.

Design: Developers visualize algorithms to better communicate the ideas to
other experts.

Optimization: Developers visualize algorithms to better understand how they
work and find possibilities to enhance them.

Debugging: Programmers use visualizations to find faults in their programs.

4.4.3 A Short History of Algorithm Animation

Allegedly, the first algorithm animation ever produced was a movie about list
processing with the language L6 [Kno66]. In the subsequent work, educational
promise was the main motivation for the production of algorithm animations
[Hop74, Bae73]. But a real impetus was provided to the field by the video
Sorting Out Sorting [Bae81] presented at the ACM SIGGRAPH conference in
1981, showing a race among nine 9 different sorting algorithms. Each value of
the list was represented by a dot in a matrix, as shown in Fig. 4.8.

Position

V
al

u
e

Position

V
al

u
e

Fig. 4.8. Matrix view: unsorted and sorted data

On the basis of experience with algorithm animations that had been de-
veloped from scratch, two seminal algorithm animation tools were developed
at Brown University to ease the development of such animations: BALSA3,
by Marc Brown [BS84] (later at MIT and DEC), and TANGO4, by John
Stasko [Sta90a] (later at Georgia Tech). In the following years, at their new
institutions Brown and Stasko developed other systems, driven to some extent
by the technological advancement in other areas, in particular 3D computer
graphics and networked computers (see Table 4.2).

3 Brown University Algorithm Simulator and Animator.
4 Transition-based Animation Generation.

90 4 Dynamic Program Visualization

Table 4.2. Offspring of BALSA and TANGO

Marc Brown (and Marc Najork) John Stasko

BALSA (1985)
BALSA-II (1988) XTANGO / TANGO (1989)
Zeus (1992) POLKA + SAMBA (front end)
Anim3D, Zeus3D (1993) Polka3D (1992)
CAT (Web-based, 1996), JCAT (1997)

BALSA introduced the concept of interesting events (see Sect. 4.4.6) and
related to this, the use of several views of the same state. Later, in BALSA-
II [Bro88], step and stop points were added. Finally, in CAT5 [BN96] and
its successor JCAT [BR96], the views were distributed over several com-
puters. TANGO [Sta90a] implemented the path-transition paradigm [Sta90b]
to enable smooth, continuous, simultaneous animations of state transitions.
TANGO is actually an interpreter for animation commands. The idea was
to implement algorithms with an arbitrary programming language and have
them produce commands in the SAMBA language as textual output. To this
end, the program usually would print these at interesting program points, ei-
ther to standard output or into a file. This output was then fed post-mortem
into the TANGO interpreter to produce the animation. To animate paral-
lel algorithms a library called POLKA6 was developed [SK93, Sta] and, us-
ing POLKA an animation interpreter called SAMBA [Sta97] enabled post-
mortem visualizations similar to TANGO. Traces had already been used by
PVM7 [Sun90] to visualize parallel programs postmortem. In this case traces
were collected at each computer, and merged and visualized later.

Some seminal papers about the classical animation tools are contained
in an anthology on software visualization [SDBP98] published in 1998. Today
there exist many more algorithm animation systems that have been developed
by other researchers, for example Animal, CATAI, Daphne, GANIMAL, Gasp,
GeoWin, Jawaa, Jeliot, LEONARDO, and Mocha, to name a few. In 2002 an
overview of the more recent developments in the field was published in a
state-of-the-art survey of software visualization [KS02].

4.4.4 Some Animations Produced by X-Tango

In the following we look at some animations produced with X-Tango. We
start by discussing animations of algorithms for binary trees, linked lists, bin
packing and, the n-queens problem.

A binary tree (Fig. 4.9) is a tree where each node has a maximum of two
children. A binary tree is natural if the left child is smaller than the right

5 Collaborative Active Textbook.
6 Parallel program-focused Object-oriented Low Key Animation.
7 Parallel Virtual Machine.

4.4 Algorithm Animation 91

Fig. 4.9. Binary tree

This

is

a listThis

is

a list

Fig. 4.10. Linked list

92 4 Dynamic Program Visualization

child and both children are smaller than their parent node. Typical algorithm
animations show the insertion and deletion of nodes.

In a linked list (Fig. 4.10), each node has a pointer to the next element.
The pointer to the first element of the list is the head pointer. The next
pointer from the last element of the list is undefined (null). Typical algorithm
animations show the insertion or deletion of elements at the head or at the
end, or at any other position in the list. In the example, the newly inserted
element is emphasized by a vertical disalignment with respect to the other
elements in the list.

Fig. 4.11. The bin packing problem

In the bin-packing problem (Fig. 4.11), a container with a fixed height
has to be filled with boxes of different sizes, such that a minimal amount
of horizontal space is used. Boxes can be stacked vertically on top of each
other as long as the height of each stack does not exceed the height of the
container. There is an online and an offline version of this problem. For the
online problem, each box must be placed before the next one is received,
i.e. the number of boxes and the size of each of these boxes are not known
beforehand. For the offline problem, the number and sizes of the boxes are
known before packing. Typical algorithm animations show the next-fit, first-fit
and best-fit strategies.

For the n-queens (Fig. 4.12), problem n queens must be placed on an n×n
chess board such that they cannot capture each other. A typical algorithm
places the ith queen on the first square of the ith row. If the queen can be

4.4 Algorithm Animation 93

Fig. 4.12. The n-queens problem

Fig. 4.13. Bubble sort algorithm

94 4 Dynamic Program Visualization

captured by one of the previously placed queens, the queen is moved to the
next square in the row. Otherwise, the algorithm tries to place the (i + 1)th
queen recursively. If this fails, the queen is moved to the next square, and so
on.

Next we discuss three animations of sorting algorithms: the bubble sort,
quicksort and heapsort. Bubble sort (Fig. 4.13) performs a pairwise compari-
son of the elements in a sequence from left to right and swaps them if the first
element is larger than the second. At the end of the first iteration, the largest
element is at the end of the sequence. The process is repeated for the rest of
the elements until no more elements are swapped. The animation shows how
the large elements move to the end of the list.

Fig. 4.14. Quicksort algorithm

Quicksort (Fig. 4.14) selects an element and splits the list such that the left
part contains all elements of smaller or equal value, and the right part all larger
elements. Then these two parts are recursively sorted in the same way. In the
animation, elements are displayed as vertical bars, the recursively constructed
parts are indicated by nested boxes, and the current pivot element, i.e. the
element where the list is split, is colored blue (black in the grayscale image).

4.4 Algorithm Animation 95

Fig. 4.15. Heapsort algorithm

A heap is a binary tree where the value of each node is larger than that
of each of its children. The heapsort algorithm (Fig. 4.15) constructs a binary
tree and establishes this heap property such that the largest element is at the
root of the tree. To get the second largest element, the root is replaced by
the rightmost leaf of the tree and the tree is traversed to establish the heap
property again. The process is repeated until the tree is empty. The heapsort
animation in the example uses two views of the same data structure, here the
list to be sorted. One view shows the list as a tree diagram, while the other
shows it as a bar diagram. In the tree view one can see how the heap property
is established, while the bar view indicates how “sorted” the list is.

4.4.5 3D for Algorithm Animation

As with other 3D visualizations, the use of the third dimension is typically
motivated by one or more of the following reasons:

Aesthetics: Three-dimensional graphics rendered with photorealistic render-
ing techniques are appealing to many people.

Evolution: Humans are used to three dimensions. It has been argued that the
human visual system has been adapted to the real world – and this is a
three-dimensional world.

Dimensionality: The third dimension can be used to add additional infor-
mation to an originally two-dimensional representation. There are two
notable instances of this:
– Multiple views: The same object can be shown in different ways by plac-

ing different, typically two-dimensional, views of the object in the 3D
space.

– History: The third dimension can be used as a time axis. Along this
time axis, the states of an object at different points in time can be
shown.

96 4 Dynamic Program Visualization

Inherence: In some domains data structures or algorithms are inherently
three-dimensional. For example, algorithms in 3D geometry such as tri-
angulation work with three-dimensional data.

Figure 4.16 shows a screen dump of an animation of the bubble sort algo-
rithm implemented with VRML [CB97] and JavaScript. The third dimension
is used to show the history of the sort, i.e. the partially sorted sequences are
shown along the Z axis.

T
im

e

Time

Fig. 4.16. Three-dimensional animation of bubble sort

As another example, look at the 3D animation of the shortest path algo-
rithm (single source shortest path, SSSP) in Fig. 4.17, which was produced
with Zeus3D [BN93]. In this animation the third dimension is used to display
additional information, here the cost. The graph is drawn in the XY plane,
and the Z axis indicates, for each node, the cost of getting from the source
node to this node. Consequently, the source node has a cost of 0. At the end
of the algorithm, the shortest-paths tree is shown, where for each node, the
shortest path is the ascending path with the lowest height.

Design Issues Looking at the examples, it is quite illuminating to see how
they address the following design issues:

How are invariants visualized? In the 3D shortest-path computation, the in-
variant is shown as follows: along each path, the columns have increasing
height.

How does focusing work? The active parts of the data structure can be drawn
in a certain color, a pointer can be placed next to them, they can move to
a certain location on the screen, or their size can be increased (zooming).

How is recursion displayed? The depth of a recursion and the various func-
tions invoked can be displayed by use of frames as in the quicksort exam-
ple, or by use of colors or even sound.

4.4 Algorithm Animation 97

3

42

Fig. 4.17. 3D animation of SSSP (c©1993 ACM)

4.4.6 Architectures of Algorithm Animation Tools

Algorithm animation tools have been designed with very different goals in
mind. A tool cannot be easy to use, comprehensible, and powerful at the
same time. What can actually be done with an algorithm animation system
and what cannot be done, depends heavily on how the algorithms and anima-
tions are coupled or separated. The following architectures have been used to
implement various algorithm animation systems and other kinds of dynamic
program visualizations:

Ad hoc: The animation of a single algorithm is implemented without using a
tool at all, but by implementing everything from scratch.

Libraries: To implement the animation of a single algorithm, libraries contain-
ing graphical abstractions, control elements, etc. are used. Such a library
might, for example, come with a VCR-like GUI with start, stop, and play
buttons.

Special datatypes: The algorithm is programmed with datatypes which have
built-in visualizations. Thus the animation is just a by-product when the
program is run.

Postmortem: The algorithm and visualization tool are two separate appli-
cations. When the algorithm is executed, a trace or animation plan is
produced and later visualized by a separate component.

Interesting events: The algorithm is annotated at essential program points
with interesting events. During execution, these events are sent to one or
more views. The approach usually applies the MVC8 design pattern.

Declarative: The annotations and algorithm are separated. There are two ap-
proaches. The first is state mapping, where a demon watches state changes
and updates the visualization of the state accordingly. The second ap-
proach uses constraints-based systems. These work in a similar way, but
the program to be visualized is itself written in a constraints-based lan-
guage.

8 Model-View-Controller

98 4 Dynamic Program Visualization

Semantics-directed: The algorithm is executed by a visual interpreter or de-
bugger which produces the visualizations automatically, but usually on a
low level of abstraction.

Both the declarative and the semantics-directed approach are usually non-
invasive, i.e. the program code does not need to be changed to get a visu-
alization of the program. In the following we compare the declarative and
the interesting-events approach. The examples are taken from a recent pa-
per [DFS02].

Example: Interesting Events in POLKA Using POLKA, programs are
annotated at essential program points with calls to methods. These annota-
tions are called interesting events. Whenever one of these program points is
reached during the execution of the program, the method sends information
about the current program state to all views. The code of our example is

void main() {
���������	
�������������������

for(j=n; j>0; j--)
for(i=1; i<j; i++)

if (v[i]>v[i+1])
{ int temp= v[i];

v[i]=v[i+1];
v[i+1]=temp;
���������	
����������������������� } }

In this example an event called Input is sent to the view referenced by bsort
at the start of the program. Within the nested loops, an event called Exchange
is sent whenever two list elements are swapped. Note that in this example there
are no other events sent. In particular, the view is not informed whenever two
elements are compared, and thus it cannot visualize how the execution of the
program proceeds.

Example: Declarations in LEONARDO LEONARDO [DF] integrates
both a C and a Pascal compiler together with a source code editor. It uses a
virtual machine with invertible instructions to visualize a program and provide
undo/redo functions for every execution step.

The visualization is separated from the program by writing the visual-
ization declarations as comments in the program code. The declarations are
written in a kind of logic programming language called ALPHA. This de-
scribes a set of visual objects. An ALPHA program consists of a sequence of
predicates that define these objects and their relationships. Each predicate is
defined by a head–body pair, where the head specifies the name and formal pa-
rameters while the body specifies the computation. The code of our example is

4.4 Algorithm Animation 99

void main() {
for(j=n; j>0; j--)

for(i=1; i<j; i++)
if (v[i]>v[i+1])

{ int temp= v[i];
v[i]=v[i+1];
v[i+1]=temp; } }

/** �������� �	

������������ ��� ��� �� ��� �� ��� � ��� �� �	

��� �� ��������������	

� ��� �!"�#"�$� �!"� �!�% �!�%$&'�(��!�
 **/

In this example, program variables such as n and v are written in lower case,
while variables of the animation language such as N, H and ID are written in
upper case. For example, the height of the Nth rectangle depends on the value
of the program variable v according to the following equation: H=15*v[N].
Thus, whenever the value of the Nth element of the array v changes, the
height of the rectangle with an ID equal to N is adapted.

4.4.7 Abstract Algorithm Animation

Focusing is a big problem in algorithm animation. What part of the data
structure should be displayed on the screen? Not all data structures need to
be displayed at all times, and often the amount of data makes it impossible to
show all data simultaneously. So we have to manage the screen estate carefully.

Data Acquisition � Analysis � Visualization

Execution

- Interesting Events

- Trace

- State Mapping

Execution

- Interesting Events

- Trace

- State Mapping

Structure

- Program code

- Specification

- Documentation

Structure

- Program code

- Specification

- Documentation

Filtering

Static Analysis

Metrics

AnimationAnimation

Annotated

Graph

Annotated

Graph

Focusing

Data Acquisition � Analysis � Visualization

Execution

- Interesting Events

- Trace

- State Mapping

Execution

- Interesting Events

- Trace

- State Mapping

Structure

- Program code

- Specification

- Documentation

Structure

- Program code

- Specification

- Documentation

Filtering

Static Analysis

Metrics

AnimationAnimation

Annotated

Graph

Annotated

Graph

Focusing

Fig. 4.18. Using program analysis to focus algorithm animations

100 4 Dynamic Program Visualization

Figure 4.18 shows how the visualization pipelines of static and dynamic
program visualization could be combined to this end. Despite its potential,
the use of static program analysis to focus algorithm animations is largely
unexplored.

Usually, at each program point only a small fraction of the data can be
accessed. One solution to determining this fraction before run time is to use
static program analyses which compute information about the accessible data
structures at each program point. Such an analysis has been developed by
Sagiv, Reps, and Wilhelm [SRW96, SRW99] and is called shape analysis. It
computes an abstract representation of linked data structures, which focus on
the active parts of these structures. For each program point, it yields a finite
set of shape graphs.

Braune and Wilhelm have suggested that abstract execution should be
animated on the basis of shape graphs [BW00]. They call the resulting ani-
mations “algorithm explanations” to emphasize that they show the invariants
of the data structures at each program point. Recently, this approach has been
extended to also show nonstructural invariants [WMS02].

h

p q

h

p q

At runtime:

Abstract shape graph:

1 or more nodes

Possible subsequent shape graphs for q := q->next:
p q

h

h

p q

h

p q

h

p q

At runtime:

Abstract shape graph:

1 or more nodes

Possible subsequent shape graphs for q := q->next:
p q

h

h

p q

Fig. 4.19. Abstract execution of q := q->next

In Fig. 4.19, the abstract execution of a program point is shown. The
abstract shape graph before the execution shows that the pointer q points to
an element immediately after the element pointed to by p. Furthermore, there

4.4 Algorithm Animation 101

q=new Node();

p=q;

while (true)

{

t=new Node();

p->next=t;

p=t;

}

q

q p

q p t

q p t

q p t

q p t

q p t

q p t q p t

q p t

q p t

q p t

First

Iteration

Second

Iteration

Subsequent

Iterations

q=new Node();

p=q;

while (true)

{

t=new Node();

p->next=t;

p=t;

}

q

q p

q p t

q p t

q p t

q p t

q p t

q p t q p t

q p t

q p t

q p t

First

Iteration

Second

Iteration

Subsequent

Iterations

Fig. 4.20. Abstract execution of a simple program

is at least one element after the element pointed to by q. If we now execute
the assignment q:=q->next, then there are two possible subsequent abstract
shape graphs. The first shows the case where there was exactly one element
more in the list, while the second abstract shape graph represents the case
where there were at least two more elements.

Thus an abstract shape graph represents a set of concrete shape graphs,
i.e. pointer structures that can occur during the execution of a program. Let γ
be a function that yields, for a given abstract shape graph, the set of concrete
shape graphs that it represents. A transition from an abstract state as1 to an
abstract state as2 is only legal9 if a transition from a concrete state cs1 to
a concrete state cs2 exists, where cs1 is represented by as1 and cs2 by as2,
or, formally, cs1 ∈ γ(as1) and cs1 ∈ γ(as1). Visual abstract execution must
show only legal transitions. Figure 4.20 shows the abstract visual execution of
a simple loop that creates an endless list. To the right of each program point
we see shape graphs that describe the various possible program states after
the instruction at that program point has been executed. For each program
point within the loop, there are three such cases: one for the first, one for
the second, and one for all subsequent iterations. So, for each program point
in the loop, the possible states are described by a set of three shape graphs,
which show the structural invariants that hold after the program point has

9 With respect to a given program.

102 4 Dynamic Program Visualization

been executed. Thus the abstract visual execution can also be seen as a visual
proof of partial program correctness. Note that the abstract shape graphs for
the second and subsequent iterations in the last row are subsumed by the
one shown between them. An abstract shape graph as2 subsumes an abstract
shape graph as1, written as1 � as2, if all concrete shape graphs represented
by as1 are also represented by as2, or, formally, γ(as1) ⊆ γ(as2).

Abstract algorithm animation is still in its infancy. Even for small pro-
grams, the set of shape graphs for each program point becomes very large. A
promising solution seems to be to partition these sets such that each partition
contains shape graphs that represent similar cases and thus do not have to be
visualized separately [JSW05].

4.4.8 Learning Scenarios

When algorithm animations are used in education, the learner typically has
to perform one of the following three tasks:

View animation of algorithm: In the simplest case, there are ready-made an-
imations with fixed inputs.10 Using existing algorithm animation tools,
animations which allow user input are also possible.

Read algorithm and view animation: As before, one can use fixed animations,
as well as those produced to allow user input, but in addition the learner
is asked to read the description of the algorithm beforehand or step by
step while the algorithm is running.

Implement algorithm and create your own animation: Easy-to-use algorithm
animation tools enable the student to implement both the algorithm and
its animation. As a side effect, the animation helps students to debug their
implementations of the algorithm.

These tasks differ in the level of learner involvement. While for the first
two it is usually low, implementing both the algorithm and the animation is
more demanding. 11

In order to achieve higher learner involvement without requiring program-
ming of animations, some more sophisticated scenarios have been developed.
Two of these are described below.

Exploring the Functional Structure Faltin has suggested an approach
that supports exploratory learning by only providing the building blocks of
an algorithm, so that the learner actively reinvents parts of an algorithm

10 Actually, to produce such animations, neither an algorithm animation system nor
an implementation of the algorithm is needed. The author of such an animation
can use standard graphics tools to produce the individual frames of the animation.

11 The engagement taxonomy suggested in a recent workshop report [NRA+03] con-
tains some more tasks: no viewing, viewing, responding, changing, constructing,
and presenting.

4.4 Algorithm Animation 103

Fig. 4.21. Composing steps

[Fal02]. To this end, the algorithm is structured into many small functions.
The task of the student is to find the steps of a function for a specific data
input. To facilitate this task, additional constraints delimit the exploration
space, and simulations of each step are provided. The student can test these
steps and compose them.

As an example, assume that we provide the students with the procedures
square and triangle in the LOGO programming language. First the students
can test these procedures by changing the value of the variable height, and
then their task is to compose these procedures to draw a house (see Fig. 4.21).

Faltin used the same basic approach to have students explore the functional
structure of a more complex algorithm, the binomial heap. One task was to
establish the heap property, i.e. that the value of the parent node is less then
or equal to those of its children, by comparing and swapping (see Fig. 4.22).
Note that the student does not see the values of each node, but has to find
out about them by comparing them.

Visualized Path Testing Instead of having the students reconstruct the
algorithm from parts, one can gain higher student involvement by having the
students find input data for the algorithm that satisfies certain criteria, and
provide visualization tools such that the students can check these criteria.

As an example of this approach, we take a closer look at program cover-
age as a criterion, and a related visualization tool. Program coverage data is
gathered by running a program with a test suite, i.e. a set of input data, and

104 4 Dynamic Program Visualization

Fig. 4.22. Interactively establishing the heap property

keeping track of which parts are actually executed. Often this information is
used as a metric, for example 20% of all statements may have been executed.
In contrast, coverage criteria are satisfied only if all parts have been executed,
i.e. if the percentage is 100%. Coverage criteria differ in what they consider
to be a program part: statements, branches, or paths.

Statement coverage is satisfied when every (non-control-flow) statement
is executed at least once with the test set. Branch coverage is satisfied when
every edge of the flow graph of the program is applied at least once with the
test set. Finally, path coverage is satisfied when the test set contains a test
case for every possible control path in the flow graph of the program. The
problem with path coverage is that the number of paths is exponential with
respect to the number of branches.

In the learning scenario considered by Korhonen et al., the task was to find
a minimal test set satisfying a certain coverage condition [KST02]. This task
was supported by a visualization tool. As an example, consider the following
Java program:

if ((a<4) || (b>5))
{ b=b+1; }
if (b<2)
{ a=a+7; }

The following test sets of pairs (a, b) satisfy the above coverage criteria: the
set {(0, 0)} satisfies statement coverage, the set {(0, 0), (4, 2)} satisfies branch
coverage, and the set {(0, 0), (0, 1), (4, 1), (4, 2)} satisfies path coverage. The
four possible paths are shown in Fig. 4.23.

4.4 Algorithm Animation 105

a<4

b>5
or

b<2

b=b+1

a=a+7

T

T

F

F

a<4

b>5
or

b<2

b=b+1

a=a+7

T

T

F

F

a<4

b>5
or

b<2

b=b+1

a=a+7

T

T

F

F

a<4

b>5
or

b<2

b=b+1

a=a+7

T

T

F

F

a<4

b>5
or

b<2

b=b+1

a=a+7

T

T

F

F

a<4

b>5
or

b<2

b=b+1

a=a+7

T

T

F

F

a<4

b>5
or

b<2

b=b+1

a=a+7

T

T

F

F

a<4

b>5
or

b<2

b=b+1

a=a+7

T

T

F

F

Fig. 4.23. Paths in the control-flow graph of the example program

In simple cases students can perform path testing just by trial and error,
but even then finding minimal sets requires argument as to why there is no
smaller set. But usually the search space is so large that only systematic
thinking will work. The student has to think about the different alternatives
at each branch and, formally or at least intuitively, accumulate the conditions
along each path to find input values that satisfy these conditions.

4.4.9 A Brief Introduction to SAMBA

SAMBA is an interactive animation interpreter that can be used with any
programming language to produce algorithm animations. It was designed to
be very easy to learn and to use. Today, there exist versions for Unix and
Windows, as well as a Java applet. SAMBA works in batch mode. The actual
algorithm is written in some programming language. When the algorithm
is executed, it writes, with some form of print statements, animation code
to a standard output device or a file. The animation code consists of ASCII
commands – one command per line. SAMBA reads this code and performs the
corresponding animation actions. Each command consists of multiple entries.
For example, consider the following SAMBA command:

line li 0.1 0.1 0.4 0.2 green thin

The first field defines the type of the command, while the remaining fields
contain parameters such as identifiers or coordinates. In the above example,
a thin green line is created, which is bound to the identifier li. The line
starts at position x = 0.1 and y = 0.1 and has a width 0.4 and a height

106 4 Dynamic Program Visualization

0.2, which means that its end points are x′ = 0.5 and y′ = 0.3. In order to
make animations independent of the resolution of the computer display and
the window size, the coordinate system runs from 0.0 to 1.0 both horizontally
and vertically and is mapped to the real coordinate system of the output
window by SAMBA.

SAMBA provides commands to create objects, to modify objects, and to
create and alter views:

comment CREATE OBJECTS
rectangle box 0.1 0.1 0.2 0.2 blue outline
circle 27 0.8 0.7 0.1 red solid
comment MODIFY OBJECTS
move li 0.5 0.6
color 27 blue
jump 27 0.3 0.4
comment CREATE AND ALTER VIEWS
viewdef MainView 600 600
view MainView

Finally, SAMBA also allows explicit concurrency of animation commands
with { and }. All commands in braces will be performed concurrently. In
the following excerpts from the animation code for a swapping operation,
two nodes and two labels in separate views (windows) change their position
simultaneously:

view TreeView
move leftnode 0.3 0.3
move rightnode 0.1 0.1
view TableView
move leftlabel 0.1 0.4
move rightlabel 0.1 0.2

The following Java implementation of Insertion Sort was annotated with
print statements to produce SAMBA animation code. The code added to the
original sorting algorithm is printed in bold face:

public class JSAMBAExample
{ static int A[] = new int[]5,7,3,9,2,9,3,6,8,4;
������ ����� ��	�
������
���
�������

public static void main(String argv[])
{ int i,k,x;
�������

for (k=1;k<10;k++) {
��������������������� ���� ����	�
�� �������

x=A[k];
��������������������� ����� ������� �������

4.4 Algorithm Animation 107

i=k-1;
����������	
� ��� ����������������� ������������

while (i>=0 && A[i]>x) {
����������	
�������
� ����� ��������� ��������

��������������� ����� ��������

����������	
�������
� ��� ������������ ��������

A[i+1]=A[i];
i--; }

A[i+1]=x;
����������	
� �������� �

����������������������� ����������

}
}

������
	�� ������

{ ��	�� ��	� !��"��

��	�� !�	�#���	��� ������ ���"�#�����������

�	� ���� �#���$������ {
��	�#������������������

!��"�#�������%&�'�

������������������ ����� ����	��� ��!�	��� �

����"��� ��!��"��� (�)� �	������ }
����������������� ��� �������������� ���������*�� �

��������+�� �� ���������*�� �

������������ ���������*��

�� ����� �	������

����������	������� ���� ����������� ����� �

���������� ����������

�� ��� �������

}

������
	�� ��������,����� �� { ,!�����)������������� }
}

The method init() creates rectangles that represent the various array
cells (see Fig. 4.24). The height of each rectangle represents the value stored
in the array cell. Furthermore, a triangle and a vertical line are created. During
the animation, the vertical line is always placed to the right of the kth element,
i.e. the one which is currently to be inserted. The triangle shows which element
it is currently compared with. All expressions to compute coordinates are
completely evaluated when the Java program is executed, and only numbers
are printed. Thus the animation code does not contain any variable names,
only numbers.

For more details on SAMBA, see John Stasko’s technical report [Sta97].
More examples and download information can be found online [Joh, Sol].

108 4 Dynamic Program Visualization

Fig. 4.24. JSAMBA animation of a sorting algorithm

4.5 Visual Debugging – Inspecting the Program State

The goal of debugging is to detect the existence of errors in a program, to
locate their position or cause, and, finally, to fix them. In the following, we
shall focus on visualization techniques that help to locate errors in programs.
In principle, there are two kinds of visualizations: those which show program
states or memory and those which display program code and test results. In
this section, we shall look at incremental interactive unfolding of the program
state and automatic traversal of the program state to produce more abstract
representations. For large data structures, methods to focus on changes and
to group similar objects to detect reference patterns are discussed. In the
next section, we will discuss how debugging can be supported by running a
program with a set of test cases and visualizing information about what parts
of the program have been executed in failed and passed runs.

Even the program state of a simple C or Java program that prints “Hello
World” on the screen consists of several thousand bytes because of the many
data structures required by the runtime system. For multimedia applications,

4.5 Visual Debugging – Inspecting the Program State 109

1: *list

name = 0x8099a92 “Luca“

self = 0x8080a88

next = 0x8081a64

day = 18

date = month = 10

year = 1996

Fig. 4.25. Nested boxes as drawn by DDD

the amount of runtime data can easily exceed several gigabytes. Displaying
all this data is impossible. The programmer needs techniques to select only
certain parts of the program state or to somehow aggregate the data such that
it fits onto the screen.

4.5.1 Interactive Visual Unfolding

Some common subtasks of debugging are, first, to identify the statements
involved and then to reduce the problem further by selecting statements which
might contain faults. Then one has to come up with hypotheses about the
faults, and set program variables to a specific state [DPS97].

As an example of an interactive visual debugger that supports these tasks,
we look at the Data Display Debugger (DDD), which allows one to visualize
program states [Zel01, ZL96]. Programs are executed in a defined environment,
and execution stops at situations specified at conditional break points. The
user can then inspect and modify the program state, and continue execution.
In a textual debugger such as the GNU gdb, the user enters a command such
as display *list and the debugger prints information about the program
state, for example the data structure referenced by the pointer *list:

(gdb) display *list
*list = { name = 0x8099a92 "Luca",
self = 0x8080a88, next = 0x8081a64,
date = { day = 18, month = 10, year = 1996}}

(gdb) _

GNU gdb uses some of the techniques discussed in Sect. 3.1.1 for pretty
printing, but the output is still difficult to read. Note that the attribute date
refers to another data structure, which is indicated by nested braces. To see
the data structure referenced by the attribute next, the user has to enter
another command, and that data structure will be printed as before.

110 4 Dynamic Program Visualization

DDD can be used as an extension to command line debugger such as
GNU gdb. It shows data structures as nested boxes (see Fig. 4.25). To follow
a pointer in a data structure, the user clicks on it and its value is unfolded,
i.e. the referenced data structure is drawn in another box and an arrow points
from the attribute to this box (see Fig. 4.26). Thus, in DDD, data structures
are incrementally unfolded by user interaction. Note that the user selects
which parts are unfolded and which are not. DDD will also detect that two
pointers refer to the same node and draw this node only once (see Fig. 4.27).

l : list

(List *) 0x884a5b2

name = “Luca“

self = 0x8080a88

next = 0x8081a64

name = “Jean-Luc“

self = 0x8081a64

next = 0x8082a34

name = “Christine“

self = 0x8082a34

next = 0x8080a88

name = “Luca“

self = 0x8080a88

next = 0x8081a64

*() next next next

name = “Luca“

self = 0x8080a88

next = 0x8081a64

name = “Jean-Luc“

self = 0x8081a64

next = 0x8082a34

name = “Christine“

self = 0x8082a34

next = 0x8080a88

self self self

l : list

(List *) 0x884a5b2

name = “Luca“

self = 0x8080a88

next = 0x8081a64

name = “Jean-Luc“

self = 0x8081a64

next = 0x8082a34

name = “Christine“

self = 0x8082a34

next = 0x8080a88

name = “Luca“

self = 0x8080a88

next = 0x8081a64

*() next next next

name = “Luca“

self = 0x8080a88

next = 0x8081a64

name = “Jean-Luc“

self = 0x8081a64

next = 0x8082a34

name = “Christine“

self = 0x8082a34

next = 0x8080a88

self self self

Fig. 4.26. Unfolding of linked data structures by DDD

l : list

(List *) 0x884a5b2

name = “Luca“

self = 0x8080a88

next = 0x8081a64

name = “Jean-Luc“

self = 0x8081a64

next = 0x8082a34

*() next next

next

selfself selfselfselfself

name = “Christine“

self = 0x8082a34

next = 0x8080a88

Fig. 4.27. Alias detection by DDD

4.5.2 Traversal-Based Visualization

In DDD, data structures are unfolded step by step. For a large data structure,
for example a long linked list, this becomes a tedious task. In a visual debug-
ging prototype developed at Princeton [KA98], the whole data structure is
unfolded at once with the help of visualization rules. More precisely, the sys-
tem traverses linked data structures. At each node, it matches the data found
with the patterns of the visualization rules. If a rule matches, it produces a
set of visualization objects – the visual model. This model is then rendered
by a separate component (see Fig. 4.28).

Visualization rules are defined in a textual notation (see Fig. 4.29). The
pattern on the left-hand side of the rule, i.e. on the left side of the colon,
checks whether attributes of the current data structure have a certain value.
If this is the case, the code on the right-hand side creates new visual objects
and controls where to continue the traversal of the data structure.

In the example, the data structure of the program is an instance of the
class Op in Java:

4.5 Visual Debugging – Inspecting the Program State 111

Class: Op

left:

right:

Class: Op

left:

right:

Class: Op

left:

right: Class: Atom

value: 2

Class: Atom

value: 4

Class: Atom

value: 7

Class: Atom

value: 5

op: 2

op: 1

op: 1

�

� �

�� ��

RendererRules Visualization
Objects

Class: Op

left:

right:

Class: Op

left:

right:

Class: Op

left:

right: Class: Atom

value: 2

Class: Atom

value: 4

Class: Atom

value: 7

Class: Atom

value: 5

op: 2

op: 1

op: 1

Class: Op

left:

right:

Class: Op

left:

right:

Class: Op

left:

right: Class: Atom

value: 2

Class: Atom

value: 2

Class: Atom

value: 2

Class: Atom

value: 4

Class: Atom

value: 4

Class: Atom

value: 4

Class: Atom

value: 7

Class: Atom

value: 7

Class: Atom

value: 7

Class: Atom

value: 5

Class: Atom

value: 5

Class: Atom

value: 5

op: 2

op: 1

op: 1

�

� �

�� ��

RendererRules Visualization
Objects

Fig. 4.28. Applying visualization patterns to data structures

class Op {
final static int PLUS=1;
final static int MINUS=2;
int op;
Expr left;
Expr right;
...

}

The visualization objects for trees are instances of the Java classes TreeNode
and TreeEdge:

class TreeNode { String icon; ... }
class TreeEdge { TreeNode from; TreeNode to; }

Given the above classes, the rule in Fig. 4.29 will create a new TreeNode
with an icon for the plus sign, and a TreeEdge from the node bound in the
environment to the variable pattern to the new node. Then it will continue
traversal with the left and right children, with the variable parent bound to
the new node.

What if the data structures to be visualized are really large? By large, we
mean that they consist of several hundreds or thousands of elements. Inter-
active unfolding would take too long, and visualization rules would produce
excessively large graphs. In the following sections, we discuss two approaches
to handling large data structures. First, one can focus on modified parts.12

Second, one can group elements to form collections of data with similar struc-
tures.

4.5.3 Memory Graphs and Memory Slices

Memory graphs represent the memory of a program. Nodes correspond to
memory content, and arrows indicate possible access paths. Memory graphs
12 Here the focusing is based on runtime information, whereas in abstract algorithm

animation static information is used (see Sect. 4.4.7).

112 4 Dynamic Program Visualization

Op plusPattern =

{ int op = Op.PLUS; } :

node=TreeNode(icon=“plus.bmp“),

TreeEdge(from=parent, to=node),

--> plusPattern.left(parent=node),

--> plusPattern.right(parent=node);

Class of Objects to apply rule toClass of Objects to apply rule to

Name of ruleName of rule

Pattern to match object withPattern to match object with

Create objects of

visual model

Create objects of

visual model

Traverse referenced

objects, pass node

in environment

Traverse referenced

objects, pass node

in environment

Fig. 4.29. Visualization rule

are computed by unfolding all accessible data structures in the program. In
[ZZ02], Zimmermann and Zeller computed memory graphs for C programs,
where all common data structures, such as structs, unions, arrays, and pointers
are properly represented.

In the following we define memory graphs for Java.13 A memory graph is
a tuple G = (V, E, root), where V is a set of nodes, E is a set of edges, and
root the root of the memory graph. Let Vs be the set of all static variables,
let Vl be the set of all local variables, and let Va be the set of all arguments
of methods. 14 We define the edges and nodes of a memory graph as follows:

• (root, v) ∈ E for all v ∈ Vs ∪ Vl ∪ Va,

• if (v1, v2) ∈ E then

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(v2, o) ∈ E if v2 is a variable refering to an object
or array o,

(v2, null) ∈ E if v2 is a reference variable
with value null,

(v2, v2.v) ∈ E if v2 is an object and v a static
or non-static object variable of v2,

(v2, ei) ∈ E if v2 is an array and ei its elements
of either primitive or reference type,

• (o.v, o′) ∈ E if (v1, o.v) ∈ E where v is an object variable referring to an
object or array o,

• V is the set of all nodes occurring in E.

Figure 4.30 shows a part of the memory graph of a Java application. Note
that one of the Address objects is referenced by two different objects.

13 A very similar concept called Java object graphs [PNB04] has been introduced
by Potanin et al.

14 To be complete, one would also have to consider the set of references registered
through the Java Native Interface (JNI) for the start set.

4.5 Visual Debugging – Inspecting the Program State 113

Mail[]

Mail

Mail

Mail

Address

Body

Name

Street

City

Recipients FaxNumber

Address Name

Street

City

Address Name

Street

City
Address Name

PO-Box

City

Body

Body

Mailbox Mail[]

Mail

Mail

Mail

Address

Body

Name

Street

City

Recipients FaxNumber

Address Name

Street

City

Address Name

Street

City
Address Name

PO-Box

City

Body

Body

Mailbox

Fig. 4.30. Example: Part of a memory graph (forward memory slice) of a Java
application

Given a memory graph, we can compute the forward memory slice for an
object o. This contains all access paths which start at the object o. More
precisely, we define the forward memory slice SF (o) as follows:

SF (o) = (V, {(v1, v2)| o →∗ v1 and (v1, v2) ∈ E})
Analogously, we define the backward memory slice as follows:

SB(o) = (V, {(v1, v2)| v2 →∗ o and (v1, v2) ∈ E})
This contains all access paths which lead to the object o. One interesting
application of these memory slices is to find possible paths by which an object
o2 is reachable from an object o1. This can be done by computing the memory
chop SF (o1) ∩ SB(o2) which contains only those edges which occur in both
slices.

Memory graphs tend to be large; for example the memory graph of the
GNU compiler has about 40 000 nodes. It is possible to fit such a graph on the
screen and navigate in it with, for example, a hyperbolic graph viewer. But
the sheer size of the graphs renders finding interesting parts almost impossi-
ble. So one needs to have automatic support to find those parts. Zimmermann
and Zeller achieved this by computing graph differences between two mem-
ory graphs. Actually, they computed the greatest common subgraph, and the
remaining edges and nodes were those that were different between the two
graphs.

Now, how does this help with debugging? Assume that you have identified
a statement or method at which your program crashes. By looking at the
differences between the memory graphs before and after the execution of that
statement or method, one can, for example, detect far-reaching side effects,
which might not have been explicit from reading the source code.

114 4 Dynamic Program Visualization

If we ignore what the nodes stand for, memory graphs abstract from con-
crete values and addresses and just present the structure, and are subject to
standard graph operations such as tests for cyclicity or isomorphic subgraphs.
As a consequence, it is even possible to compute the graph differences between
memory graphs resulting from different runs of the same program. Looking
at the differences between memory graphs which have been captured at the
same break point for a successful and a failing run of a program can help to
identify those parts of the program state that caused the error.

4.5.4 Reference Patterns

Instead of intersecting memory graphs, the visual Java debugger Jinsight [IBMb,
PJM+02] developed at IBM Research groups objects of the same class together
to form what are called reference patterns. Reference patterns are trees. In
a forward reference pattern, each node represents all objects of a single class
which are referenced by at least one of the objects represented by the parent
of that node. In a backward reference pattern, each node represents all ob-
jects of a single class which refer to at least one of the objects represented by
the parent of that node. Reference patterns were originally developed to find
memory leaks in Java programs [dPS99]. A similar approach can be used to
extract execution patterns from a dynamic call graph [PLVW98].

Fig. 4.31. Reference pattern extracted for a hash table

Figure 4.31 shows a forward reference pattern of depth 6 as it is displayed
by Jinsight. The node to the left represents only one Hashtable object; it
refers to an Object array which contains 329 objects of class HashtableEntry.
These 329 objects refer to 413 objects of class String, and 43 objects of class
HashtableEntry. In total, the pattern gives a summary of about 900 objects,
assuming that there are no shared objects.

More precisely, a reference pattern is a tuple (V, E, root), where the nodes
in V have the form (O, t, d), and

• O is a set of objects of the same type t;
• d is the depth of this node, i.e. the length of the path from the root root

to this node.

Given a forward memory slice SF (o) = (V, E, root), we define a forward
reference pattern RF (o) = (V ′, E′, root′) of the object o as follows:

4.6 Visual Testing – Detecting Possibly Buggy Program Code 115

• root′ = ({o}, t, 0), where t is the type of the object o,
• root′ ∈ V ,
• if (O, t, d) ∈ V ′⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

((O, t, d), (Oi, ti, d + 1)) ∈ E′ if t is an object type and
Oi = {o′|(o, o.v), (o.v, o′) ∈ E, o ∈ O,
v is an object variable,
and the type of o′ is ti},

((O, t, d), (O′, t′, d + 1)) ∈ E′ if t is an array type and
O′ = {o′|(o, o′) ∈ E, o ∈ O,
and the type of o′ is t′}.

Analogously, given a backward memory slice SB(o) = (V, E, root), we define a
backward reference pattern RB(o) = (V ′, E′, root′) of the object o as follows:

• root′ = ({o}, t, 0) where t is the type of the object o,
• root′ ∈ V ,
• if (O, t, d) ∈ V ′⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

((O, t, d), (Oi, ti, d + 1)) ∈ E′ where Oi = {o′|(o′, o′.v), (o′.v, o) ∈ E,
o ∈ O, v is an object variable,
and the type of o′ is ti},

((O, t, d′), (O′, t′, d + 1)) ∈ E′ where O′ = {o′|(o′, o) ∈ E, o ∈ O,
and the type of o′ is an array type t′}.

Because of cycles, reference patterns can become infinite, and thus in practice
we only compute them up to some given depth.

Jinsight can also show sharing of objects. For every object that is rep-
resented by several nodes in the reference pattern, an arrow is drawn from
these nodes to one of them, for example the one that was visited first when the
memory graph was traversed. Figure 4.32 shows a reference pattern extracted
from a forward memory slice of a Java application.

4.6 Visual Testing – Detecting Possibly Buggy Program
Code

Detecting those parts of the program state that have incorrect values does
not necessarily mean that the programmer knows what part of the program
code led to these wrong values and needs to be fixed. In this section, we
look at techniques that can highlight possibly buggy program parts. These
techniques are based on the following heuristic: parts of a program that are
only or mostly executed when the program produces an error are more likely
to contain a bug.

4.6.1 Dynamic Program Slices

In the previous sections we have seen that one can regard the data stored in
memory as a huge graph and focus on certain subgraphs, which we called mem-

116 4 Dynamic Program Visualization

3

2

33

3
2

223

Reference

Pattern

Extraction

Mail[]

Mail

Mail

Mail

Address

Body

Name

Street

City

Recipients FaxNumber

Address Name

Street

City

Address Name

Street

City
Address Name

PO-Box

City

Body

Body

Mailbox

Mail[] Mail Address

Body

Name

Street

City

Recipients FaxNumber

Address Name

Street

City

PO-Box

PO-Box

Mailbox

Fig. 4.32. Example: Linked data (forward memory slice without variables) and its
forward reference pattern

ory slices. We can use a very similar technique to focus on certain subgraphs
of a program. Remember that we can represent a program by its control-flow
graph.

A static slice is the set of all program points that may affect the value of a
particular output or an instance of a variable at a certain program point. Static
slices are computed by static program analyses similar to those presented in
Section 3.3.3.

In the following we shall look at slices computed for real runs of a program
instead. An execution slice is the set of all program points executed for a
given input. A dynamic slice is the set of all program points that, for a given
input, actually affect a program point or an instance of a variable at a certain
program point. As a consequence, a dynamic slice is a subset of an execution
slice.

4.6 Visual Testing – Detecting Possibly Buggy Program Code 117

An important operation on dynamic slices is dicing. A dice is the set
difference A − B between two slices A and B. For example, X-Slice [Xsl] is
a slicing and dicing tool for C programs. Here a dice contains those program
points which were executed for a failing test case but not for a successful test
case. In Fig. 4.3315, the program points of the dice are shown in red in the
program code.

Fig. 4.33. Example of the use of X-Slice

4.6.2 Visualizing Test Case Results

Testing is the process of executing a program with the intent of finding
errors.

[Mye79]

Testing is done by running a program with some input data and checking
whether it produces the expected output or behavior. Test cases describe how
to test a whole program, or modules or functions thereof. A test case identifies
15 Reprint courtesy of Cleanscape Software Int’l

118 4 Dynamic Program Visualization

the state before the test is executed, the module or function to be tested,
parameter values for the test, and the expected outcome. For simplicity, in
the following we shall consider only test cases for a whole program. Let G
be the grammar of a programming language. We model the execution of a
program by a function run():

run : LG(S) × I → O
O : output values or final states
I : input values or start states

(Program execution)

For our purposes, a test case (in, out) consists only of the input values and
the expected outcome. We call a set of test cases a test suite T ⊆ I ×O. Now
we can run a program s for each of the inputs in our test suite and look to
see whether each run yields the expected outcome. As a result, we partition
the test cases into a set of passing and a set of failing test cases:

passed(s, T) = {(in, out) ∈ T |run(s, in) = out}
failed(s, T) = {(in, out) ∈ T |run(s, in) 	= out} (Actual test runs)

To get from the failure to the error, i.e. from failing runs to wrong parts of the
program (also called bugs or defects), we need information about individual
program points in the program. For this purpose, we compute execution slices,
i.e. the program points covered by an actual run:

coverage(s, in) = {p|program point p is visited when
executing program s with input in}

(Coverage)

Taking into account the failure or success of each test case, we get failing and
successful execution slices:

passed(p, s, T) = {(in, out) ∈ passed(s, T)|p ∈ coverage(s, in)}
failed(p, s, T) = {(in, out) ∈ failed(s, T)|p ∈ coverage(s, in)}
Note that these sets are usually not disjoint, because program points such
as those of the initialization of a program are executed by both failing and
successful runs.

In Sect. 4.6.1, dicing was used to detect program points that might contain
an error. For dicing, we need two slices, and a program point is either only in
one of the two slices or in both. Now we have two sets of slices, and a program
point can be in some of the slices in each of these sets. So we could use a
three-valued approach, i.e. the program point is executed only by passed test
cases, failing test cases or both, and consequently we could use three different
colors, when visualizing the program points of the program.

In the system Tarantula [JHS02, Tar], the relative numbers of failing exe-
cutions of program points are used as a basis for coloring the program points:16

16 Gammatella, a successor tool of Tarantula, gathers information about errors and
problems with already deployed systems instead of test cases [JOH04].

4.6 Visual Testing – Detecting Possibly Buggy Program Code 119

1800 1998 2000 2002 2004 2006 2008

1 int isLeapYear(int year)

2 { if (y%4==0) 1 1 1 1 1 1 1 4 3 1,00 1,00 0,50 1,00

3 if (y%100==0) 1 0 1 0 1 0 1 1 3 0,25 1,00 0,20 1,00

4 if (y%400==0) 1 0 1 0 0 0 0 1 1 0,25 0,33 0,43 0,33

5 return true; 0 0 1 0 0 0 0 1 0 0,25 0,00 1,00 0,25

6 else return true; 1 0 0 0 0 0 0 0 1 0,00 0,33 0,00 0,33

7 return false; } 0 1 0 1 1 1 1 3 2 0,75 0,67 0,53 0,75

true false true false false false false

no yes yes yes no yes noPassed:
p

assed

failed

%
p

assed

year

Result:

%
failed

h
u

e

b
rig

h
tn

ess

Fig. 4.34. Color coding of test case results per program point

%passed(p, s, T) =
|passed(p, s, T)|
|passed(s, T)| , %failed(p, s, T) =

|failed(p, s, T)|
|failed(s, T)| .

The system uses a color-coding scheme where the hue indicates the relative
success rate of each statement, assuming a continuous color scale from 0 (red)
through 1/2 (yellow) to 1 (green):

hue(p, s, T) =
%passed(p, s, T)

%passed(p, s, T) + %failed(p, s, T)
. (Hue)

In addition to the hue, brightness is used to indicate the coverage of the
program point; in fact, the maximum of the two percentages is chosen:

bright(p, s, T) = max(%passed(p, s, T), %failed(p, s, T)). (Brightness)

Consider the example shown in Fig. 4.34. This shows the visualization of
test cases for a buggy implementation of a function to determine leap years.
Recall that a leap years are every year divisible by four except for those years
which are both divisible by 100 and not divisible by 400. Line 5 is colored
green because it is executed only in one successful run, while lines 3 and 6 are
colored red because they are executed mostly in failing runs. The indentation
suggests that line 6 is the else branch of line 3, but as the conditional in
Java is right-to-left associative, line 6 is actually the else branch of the if
statement in line 4. So the bug in the program is actually an instance of the
dangling-else problem.

To display the test case results for large programs, Tarantula uses the line
representation originally introduced by the SeeSoft system [ESJ92] (see also
Sects. 1.4.3 and 5.1.1). Tarantula represents each character of the source code
as a pixel. The hue and brightness of these pixels are computed as described
above. The results for 300 test cases are shown in Fig. 4.35. Note that only a
small fraction of the program is colored red.

In trying to produce our own examples to illustrate the Tarantula ap-
proach, we found that it does not work very well for loops or recursive func-
tions – in other words, for the majority of programs. In the presence of loops
and recursion, program points are visited several times for the same test case,

120 4 Dynamic Program Visualization

Fig. 4.35. Screenshot of Tarantula

but Tarantula would only take into account the fact that they have been vis-
ited at all. We can achieve better results if we use the absolute number of
visits instead:

COVERAGE(s, in) = { (p, n)|program point p is visited n times
when executing program s with input in},

PASSED(p, s, T) = {(p, n)| (in, out) ∈ passed(s, T)
and (p, n) ∈ COVERAGE(s, in)},

%PASSED(p, s, T) =

∑
(p,n)∈PASSED(p,s,T)

n

∑
(p0,n)∈PASSED(p0,s,T)

n
,

where p0 is the first program point of the program s. The functions FAILED()
and %FAILED() are defined analogously. Consequently, hue and brightness are
now computed with these functions.

Figures 4.36 and 4.37 show test case visualizations for a buggy implemen-
tation of a function to compute the power kn based on the observation that
kn = kn/2 ∗ kn/2 if n is even and kn = k ∗ kn/2 ∗ kn/2 if n is odd. We chose the
ascending powers 20, . . . , 26 as test cases. Three computations produced wrong
results. Using the first color-coding scheme, as shown in Fig. 4.36, lines 4 to

4.6 Visual Testing – Detecting Possibly Buggy Program Code 121

7 are colored slightly orange. Using our second scheme, as shown in Fig. 4.37,
line 6 is colored green, indicating that it is unlikely to contain the bug, while
the faulty return statement in line 7 is colored red.

nonoyesnoyesyesyesPassed:

168164421Result:

1,000,431,000,75331111110else return k*t; } }7

0,670,430,670,50221110100return t*t;6

1,000,431,000,75331111110if ((n%2)==0)5

1,000,431,000,75331111110else { int t=power(k, n/2);4

1,000,501,001,00341111111return 1;3

1,000,501,001,00341111111{ if (n==0)2

int power(int k,int n)1

6543210n

b
rig

h
tn

ess

h
u

e

%
failed

%
p
assed

failed

p
assed

2222222k

nonoyesnoyesyesyesPassed:

168164421Result:

1,000,431,000,75331111110else return k*t; } }7

0,670,430,670,50221110100return t*t;6

1,000,431,000,75331111110if ((n%2)==0)5

1,000,431,000,75331111110else { int t=power(k, n/2);4

1,000,501,001,00341111111return 1;3

1,000,501,001,00341111111{ if (n==0)2

int power(int k,int n)1

6543210n

b
rig

h
tn

ess

h
u

e

%
failed

%
p
assed

failed

p
assed

2222222k

Fig. 4.36. A buggy recursive program: Tarantula color-coding scheme

nonoyesnoyesyesyesPassed:

168164421Result:

0,550,350,550,30632212110else return k*t; } }7

0,300,620,180,30231120100return t*t;6

0,730,450,730,60863332210if ((n%2)==0)5

0,730,450,730,60863332210else { int t=power(k, n/2);4

0,400,590,270,40341111111return 1;3

1,000,501,001,0011104443321{ if (n==0)2

int power(int k,int n)1

6543210n

B
R

IG
H

T
N

E
S

S

H
U

E

%
F

A
IL

E
D

%
P

A
S

S
E

D

F
A

IL
E

D

P
A

S
S

E
D

2222222k

nonoyesnoyesyesyesPassed:

168164421Result:

0,550,350,550,30632212110else return k*t; } }7

0,300,620,180,30231120100return t*t;6

0,730,450,730,60863332210if ((n%2)==0)5

0,730,450,730,60863332210else { int t=power(k, n/2);4

0,400,590,270,40341111111return 1;3

1,000,501,001,0011104443321{ if (n==0)2

int power(int k,int n)1

6543210n

B
R

IG
H

T
N

E
S

S

H
U

E

%
F

A
IL

E
D

%
P

A
S

S
E

D

F
A

IL
E

D

P
A

S
S

E
D

2222222k

Fig. 4.37. A buggy recursive program: alternative color-coding scheme based on
total number of visits

122 4 Dynamic Program Visualization

4.6.3 Web Service Flow Patterns

Web services are currently praised as the solution to the development of dis-
tributed applications by allowing one to compose services in a standardized
way [W3C].

As more Web services become available, applications get larger and more
complex. The Web Services Navigator [IBMc, PKM06] is a visualization tool
for understanding, debugging and analyzing the performance of these com-
plex applications. To this end, execution traces in the form of Web service
transactions are collected. A Web service transaction is a tree of messages
and invocations that is initiated by a client. Thus, a transaction captures the
flow of one service invoking one or more other services, which in turn may
invoke other services and so on.

Fig. 4.38. Traces of 50 Web service transactions (Reprint courtesy of International Business

Machines Corporation, copyright 2006 c©International Business Machines Corporation and ACM)

Transactions can be visualized using a sequence diagram-like represen-
tation (see Sect. 3.4.2), where vertical lines represent the different services
involved. To test or tune the performance of a complex Web service, one typ-
ically needs to collect a large number of transactions. As shown in Fig. 4.38,
simply drawing all transactions in a single diagram does not reveal any new
insight other than revealing the fact that it looks like a mess.

By partitioning the transactions into groups of isomorphic tree shapes, and
then further subdividing these groups based on matching node and edge at-

4.6 Visual Testing – Detecting Possibly Buggy Program Code 123

Fig. 4.39. Flow patterns computed for the 50 transactions (Reprint courtesy of International

Business Machines Corporation, copyright 2006 c©International Business Machines Corporation and ACM)

tributes, the Web Services Navigator computes what we call Web service flow
patterns. Figure 4.39 shows the three flow patterns computed for the 50 trans-
actions shown earlier: 24 of the transactions match the first pattern, 25 the

124 4 Dynamic Program Visualization

second, and only one matches the third pattern. In fact, this last pattern rep-
resents an erroneous situation, where a request was sent but no response was
received. This is indicated by the two question marks shown at the lower end of
the pattern. In addition, the last pattern differs from the other patterns in the
timing of the events: the second Web service ServicePackOrderValidation
takes more time before it calls another service.

4.7 Summary

While most dynamic program visualization techniques have been developed
for algorithm animation and educational purposes, many of the techniques can
be used for other purposes as well. For example, dynamic visualizations of the
software architecture show the dynamic behavior of a software system at the
level of its components by gathering information at run time and enriching the
static architecture diagram or producing behavior diagrams such as sequence
diagrams.

We have discussed several more or less invasive dynamic acquisition meth-
ods which are mostly based on instrumenting the source, intermediate, or
binary code. While invasiveness is not usually an issue for algorithm anima-
tion, it is critical for analyzing, debugging, or optimizing software such as
embedded systems or parallel programs.

In general, dynamic information can be shown by accumulating informa-
tion over time, by spatial projection on the time axis, or by animation, i.e.
the time dimension of the data is represented by time when the user views
the visualization. Algorithm animation applies this latter technique.

Abstract algorithm animation uses static program analysis instead of dy-
namic data and is able to show all possible executions of a program by exe-
cuting the program with abstract values instead of real data. Abstract values
represent possibly infinite sets of real data that have some common properties,
for example the set of all positive numbers or the set of all data structures
that have the same shape.

Combining both static and dynamic analysis is an active field of research
which will certainly enable new kinds of program visualizations.

Visual debugging tools display either the program state or the program
code. While the program state is often shown as a graph, the program code
is typically shown as color-coded text. Graphical representations of program
code such as those discussed in Chap. 3 are presumably not widely used
because programmers are too familiar with the textual representation of their
programs.

As the program state tends to be very large, visual debuggers usually let
the programmer interactively unfold those parts of the program state he or she
is interested in. We have also discussed some more automatic approaches, that
can be used to deal with large program states: differences between memory

Exercises 125

graphs can be help to identify possibly wrong program states, and reference
patterns represent several objects of the same class by a single node.

Just like the program state, the source code of real applications tends to
be very large. To automatically detect buggy program parts, the coverage
information from several failing and successful program runs can be combined
to compute for each line of code a heuristic probability that it contains the
bug. This probability is then visualized using a continuous color scale.

Finally, to visualize large amounts of execution traces, one can compute
groups of traces with similar shape. Partitions which contain one or few traces
are likely to represent problematic situations.

Exercises

Exercise 1: Look for algorithm animations on the Web. You may want to
use the following URLs as starting points: http://www.cs.hope.edu/

~alganim/ccaa/,http://www2.hig.no/~algmet/animate.html, and http:
//www.animal.ahrgr.de/Anims/animations.php3. How have the de-
velopers of these animations addressed the design issues discussed in
Sect. 4.4.5?

Exercise 2: The goal of this exercise is to produce an algorithm animation of
the SIT problem (scheduling of independent tasks): Given m machines and
n jobs of lengths a1, . . . , an, allocate the jobs to the machines such that
the maximal span (the span of the longest-working machine) is minimal.

There are exist, for example, the following three different algorithms to
solve the problem:
1. Heuristic: allocate the jobs in order a1, . . . , an. Each job is allocated

to the machine with the present minimal span.
2. Heuristic: sort the jobs by length in descending order. Then use algo-

rithm 1.
3. Use a branch-and-bound algorithm (or just a complete search) to com-

pute the optimal solution.
Implement at least two algorithms in your favorite programming lan-

guage and annotate them with print statements to produce a SAMBA
trace. The animation should be a good “visual explanation” of the algo-
rithm. To make things easier you can assume m = 3. If this is too easy,
try to solve the more challenging problem for arbitrary m > 1.

For this exercise JSAMBA, a reimplementation of SAMBA in Java, is
recommended. The trace can be passed to JSAMBA using cut and paste
into the input field of the JSAMBA applet.

Exercise 3: Instead of SAMBA, one can also use SVG (Scalable Vector Graph-
ics). Write a converter that translates SAMBA animation plans into SVG
code. For circles, texts, and rectangles, as well as for animations that move
these objects to given coordinates, the translation is not too difficult. The

126 4 Dynamic Program Visualization

following examples should give you some ideas about how the translation
should work. Note that the origin of the SAMBA coordinate system is
in the lower left corner, whereas in SVG it is in the upper right corner.
Assuming an SVG window of size w × h, a SAMBA coordinate (x, y),
where x, y ∈ [0, 1], corresponds to the SVG coordinate (x ∗ w, h − y ∗ h).
The examples are

JSamba: rectangle 3 0.1 0.9 0.1 0.1 blue solid
SVG: <rect id="object_3"

x="10" y="0" width="10" height="10"
fill="blue" opacity="1.0"/>

JSamba: moverelative 3 0.05 -0.4
SVG: <animate id="step_2x" xlink:href="#object_3"

attributeName="x" attributeType="XML"
begin="step_1x.end" dur="5s" fill="freeze"
additive="sum" accumulate="sum"
from="0" to="5" />

<animate id="step_2y" xlink:href="#object_3"
attributeName="y" attributeType="XML"
begin="step_1y.end" dur="5s" fill="freeze"
additive="sum" accumulate="sum"
from="0" to="40"/>

Exercise 4: Given the following program, find a minimal set of test cases
which cover all paths. (Hint: draw the control-flow graph.)

while ((a+b+c)<100)
{ if ((a-b)<c) { b=b+1; }
if ((b+c)==a) { c=c+2; }
else {
if (a==b) { a=a+1; }

}
a=a+1;

}

Exercise 5: On the basis of the memory graph in the upper part of Fig. 4.32
compute and draw the backward memory slice starting at the object of
type PO-Box.

For the following exercises, you have to “execute” the following program
by paper and pencil for several test cases. For each program point p and
each test case q, you have to count the number of times p is executed during
failing runs, fp,q, and successful runs, sp,q. In addition, we are interested in
whether a program point was executed at all during a failing run, i.e. Fp,q = 1
iff fp,q > 0 otherwise Fp,q = 0. Analogously, for successful runs we define
Sp,q = 1 iff sp,q > 0, otherwise Sp,q = 0.

Exercises 127

p | program points q | test cases

--+---------------- --+-------------

1 | running=true; 1 | x=1 , y=0

2 | while (x>0) 2 | x=2 , y=2

3 | if (x%y==0) 3 | x=3 , y=2

4 | x=x-1; 4 | x=3 , y=1

| else 5 | x=3 , y=3

5 | y=y-2; 6 | x=5 , y=3

6 | running=false; 7 | x=5 , y=4

Note that % represents the modulo operator in Java and that it throws division-
by-zero exceptions.

Exercise 6: Compute the numbers fp =
∑

fp,q, sp =
∑

sp,q, Fp =
∑

Fp,q,
and Sp =

∑
Sp,q. Now there are various relations for each program point

that you are going to represent: fp/sp, fp/(fp + sp), Fp/Sp, and Fp/(Fp +
Sp). Instead of using color coding, draw for each of these relations a 3× 2
matrix M such that the entry Mi,j shows the value of the relation for the
program point (i − 1) ∗ 3 + j.

Exercise 7: For each of the relations, suggest a way of using colors and
possibly other means such that not only the value of each matrix en-
try is visualized but also its support. A simple color-coding scheme
σ : R → C would map the values to a color space, for example
C = {red, orange, yellow, green, blue}, and we would color the matrix entry
of p with σ(fp/sp). How can you, in addition to the value of each matrix
element, also visualize its support or evidence; for instance, fp = 5 and
sp = 20 has more support than fp = 1 and sp = 4, although 5/20 is equal
to 1/4.

Exercise 8: For the relation fp/(fp + sp), draw three bar charts that differ
in the way bars are colored, placed, sized, overlap, etc. Try to come up
with designs that highlight program points that are very likely to cause
the error.

Exercise 9: The Web Services Navigator shows the dynamic invocation tree
such that the duration of each invocation is represented by the length of a
vertical bar. How could one show the same information using a treemap?
Draw an example. What are advantages and disadvantages of this repre-
sentation? Can you think of other tree representations that would show
the timing information in a suitable way?

5

Visualizing the Evolution of Software Systems

I have called this principle, by which each slight variation, if useful, is
preserved, by the term Natural Selection.

(Charles Darwin, The Origin of Species)

Looking at the multitude of research papers that have the term “software
evolution” in their titles, one could easily conclude that software evolution has
just become a synonym for the software development process. A closer look
reveals that many authors use the term to emphasize that a software system
changes throughout its lifetime. As Frederick Brooks put it in his famous
article “No silver bullet” [Bro87],

All successful software gets changed.

A software system has to be adapted to the changing needs and environment of
its users. This is usually only necessary for successful software. Economically,
maintaining unsuccessful software does not make sense. If successful software
did not change, the software company would eventually lose customers to its
competitors.

So change plays a major role in software evolution. In general, there are
two areas within software evolution:

Design for change: Here the goal is to devise rules and architectures to facil-
itate the task of changing a software system over time, addressing issues
such as reconfiguration, adaptation, extension, debugging, optimization,
evaluation (measuring changeability), and project management.

Analysis of software histories: During the lifetime of a software system, many
versions will be produced. Analyzing the source code of these versions, as
well as documentation and other meta-information, can reveal regularities
and anomalies in the development process of the system at hand.

In some cases the two areas complement each other; for example, on the
one hand software histories can be used to validate suggested rules or archi-
tectures, and on the other hand they can be used to discover them. Some

130 5 Visualizing the Evolution of Software Systems

very general rules have been suggested on the basis of some case studies by
Lehman, basically stating that the size, functionality, and complexity of a
software system increases over time, while its growth rate and quality de-
crease [BL76, Leh80]. Independently of each other Basili and Perricone, and,
independently, Möller performed case studies to validate the rule that smaller
changes have a higher error density than larger ones [BP84, MP95, FO00].
Intuitively, programmers tend not to spend the same amount of time on un-
derstanding the context and, in particular, the surrounding source code of
smaller changes as they would do for larger changes, although in both cases
basically the same level of understanding is required. For many of the rules
published in the software engineering literature, the relevance with to other
projects is unclear: either the rules are too general, or the results of the case
studies cannot be transferred, because the constraints of the case studies are
not well documented. To remedy this situation, the development of tools for
validating rules on the basis of the history of ones own project or even for
discovering new project-specific rules is an active area of research.

As shown in Fig. 5.1, evolutionary biologists look for differences in genes.
Finding common patterns in these differences enables them to formulate rules
about how a certain species evolves or even how species in general evolve.
Genes are often called the programs of life. By use of this analogy, software
evolution researchers can use methods similar to those of evolutionary biolo-
gists.

In this chapter we shall address mainly the visual analysis of software
histories. In particular, we shall look at three kinds of visualizations. The
first is those which visualize metrics on a flat representation of the software.
The second is those that also show structural information. Most techniques
of these two types show the changes of the metrics and/or of the structure
over time. The third is techniques that extract recurring patterns from the
software history using data-mining and visual data-mining techniques.

5.1 Visualizing Changes in Software Metrics

Software engineers are faced with a plethora of general requirements related
to software quality. Software should be be easy to use, fast, correct, reliable,
secure, extendable, and maintainable. As a consequence, software engineers
have come up with many software metrics to quantify various properties of
software and relate them to the above-mentioned aspects of quality. Some
of the very basic measures are the size of a module, the run time of a pro-
gram, the number of changes or bug fixes in a module or even a single line of
code, the number of programmers that have made a change, and the depth
of nested blocks. Studies that found that a high McCabe complexity (see
Sect. 3.4.3 implied many bugs, have led to the adoption of the McCabe com-
plexity as an important quality indicator in industrial software development.
Recently, there have been several case studies [GKMS00] which found that

5.1 Visualizing Changes in Software Metrics 131

� ?

int nonsense(int x)

{

x=x+1;

for (i=1;i<100;i++)

{ x=i*x; }

return x;

}

int nonsense(int x)

{

x=x+1;

for (i=1;i<100;i++)

{ x=i*x; }

return x;

}

� ?� ?

int nonsense(int x)

{

x=x+1;

for (i=1;i<100;i++)

{ x=i*x; }

return x;

}

int nonsense(int x)

{

x=x+1;

for (i=1;i<100;i++)

{ x=i*x; }

return x;

}

� ?

int nonsense(int x)

{

x=x+1;

for (i=1;i<100;i++)

{ x=i*x; }

return x;

}

int nonsense(int x)

{

x=x+1;

for (i=1;i<100;i++)

{ x=i*x; }

return x;

}

� ?

Fig. 5.1. Analogy between biological and software evolution

CC was strongly correlated to simpler measures such as number of functions
or variables, or of lines of code. Thus, these simpler measures could be used
as quality indicators, as well.

5.1.1 SeeSoft

The SeeSoft system introduced a space-filling visualization for metrics related
to the individual lines of code such that modules with up to one million lines
of code can be displayed and fitted on the screen [ESJ92]. The goal of space-
filling visualizations is to convey as much information as possible with as
few pixels as possible. SeeSoft provides several color-coded visualizations, as
shown in Fig. 5.2:

Textual representation: Each line of text is shown as colored text. All charac-
ters in the line have the same color.

Line representation: Each line of text is represented by a colored line of pixels.
Pixel representation: Each line of text is represented by a one pixel (or a few).

The pixels representing lines can be ordered according to either the order
of the lines in the text or their color.

File summary representation: Every file is represented by a box. There are
four different sizes (quartiles).

The metrics that have been visualized with this system are code age, num-
ber of bug fixes, depth of nested blocks, and profiling data. For example, one
can use the heated-object color scale and the code-age metric. In this case red
(hot) is used for lines that have been changed recently, whereas blue (cold) in-
dicates lines that have not been changed for a long time. With this color code,

132 5 Visualizing the Evolution of Software Systems

void bubblesort(int a[]) {

int len=a.length;

for(int i=0; i<len; i++) {

for(int j=0; j<len; j++) {

if (a[j]>a[j+1]) {

int tmp = a[j]; // swap

a[j] = a[j+1];

a[j+1] = tmp; } } }

return; }

�

ordered
by line

ordered
by color

Fig. 5.2. Representation by color-coded lines and pixels

the user can easily see what parts of a program are currently under develop-
ment. Another nice feature is that common code and operating-system-specific
code can be colored differently.

The SeeSys system that was developed later on [BE95] provides a hierar-
chical representation based on treemaps (see Sect. 2.3) of subsystems, direc-
tories, and files. At each level, the value of the metric represented is computed
from the metrics of the elements of the level below, for example the number
of noncommentary source lines in a directory is the sum of the numbers of
the files and directories contained therein.

Fig. 5.3. Color-coded line representations of successive versions of a file

Both SeeSoft and SeeSys can be used to animate the evolution of a system
by showing representations of the same parts of the system in a sequence
of states of development. Figure 5.3 shows line representations of successive
versions of a file. Assuming that the color indicates the age of the last change,

5.1 Visualizing Changes in Software Metrics 133

i.e. red indicates that the line was changed in going from the previous to the
current version, we can easily see in this example that the fourth line is a hot
spot, i.e. it is often changed, while most of the other lines were changed once
at the beginning of the development.

Fig. 5.4. CVSScan: evolution of a single file

As shown in Fig. 5.4, CVSScan [VTvW05] shows the evolution of a sin-
gle file. Each version of the file is drawn in a column using the SeeSoft line
presentation. Successive versions of the file are shown in successive columns.
In Fig. 5.4, line 327 of version 19 of the file vtkActor.cxx has been selected

134 5 Visualizing the Evolution of Software Systems

and is shown in detail in the lower part of the window. The dark line in the
upper part shows the trajectory of the selected line of code in the successive
versions.

Aspect Browser [GYK01] applies the SeeSoft technique to the visualization
of aspects. Basically, lines of code that belong to an aspect pattern described
by a regular expression are drawn in a color associated with that aspect.
Aspect conflicts, i.e. lines that belong to more than one aspect, are colored
red.

To visualize and support collaborative, distributed software development,
Augur [FD04] extends the line-oriented view of SeeSoft with author and syn-
tactical information and combines it with other views, such as a graph view
showing relations between different developers.

Recently a 3D extension of the SeeSoft approach called SV3D was devel-
oped [MFM03, Mar]. It represents each line of code by a three-dimensional
box. In addition to color coding, the height of the box is used to visualize
a metric, e.g. the color of a box encodes the programmer, while its height
encodes the number of bug fixes.

void bubblesort(int a[]) {

int len=a.length;

for(int i=0; i<len; i++) {

for(int j=0; j<len; j++) {

if (a[j]>a[j+1]) {

int tmp = a[j]; // swap

a[j] = a[j+1];

a[j+1] = tmp;

}

}

}

return;

}

10 LOC 100 LOC 1 MLOC

?
e.g.

Windows Vista

has 50 MLOC

�

�
�

1KLOC

void bubblesort(int a[]) {

int len=a.length;

for(int i=0; i<len; i++) {

for(int j=0; j<len; j++) {

if (a[j]>a[j+1]) {

int tmp = a[j]; // swap

a[j] = a[j+1];

a[j+1] = tmp;

}

}

}

return;

}

10 LOC 100 LOC 1 MLOC

?
e.g.

Windows Vista

has 50 MLOC

�

�
�

1KLOC

Fig. 5.5. The limits of space-filling code visualization

On an ordinary computer screen with, for example, a resolution of 1280×
1024 pixels, the SeeSoft pixel representation allows 1.3 million lines of code to
be fitted on the screen. Currently, Debian GNU Linux has more than 200 mil-
lion lines of code, and, allegedly Microsoft Windows Vista has 50 million lines
of code. So we would need 200 computer screens for Linux and 50 computer
screens for Windows to get an overview of the system. In other words, while
the space-filling approach of SeeSoft works for many real software projects,
it does not scale to some of today’s really big software projects, as shown in
Fig. 5.5.

5.1 Visualizing Changes in Software Metrics 135

5.1.2 Revision Towers

Revision towers are a tool for visualizing the contents of an RCS or CVS
source code repository [TM02] containing C programs, i.e. files with extensions
.c and .h. Each tower represents the history of a pair of files (header and
implementation). In the tower, each version of a file is shown as a rectangle,
which is sized and colored according to various properties, for example its
width is related to the size of the version and its height to its lifetime, while
the color indicates the programmer who checked it into the repository (see
Fig. 5.6). Instead of showing all versions in the tower at once, one can use
animation to see when new versions were checked in.

T
im

e

Header Implementation

Programmer: A B C

Code Size

Fig. 5.6. Revision tower: evolution of a C file and its header file

5.1.3 The Evolution Matrix

Rectangles are also used by a visualization called the evolution matrix [Lan01]
to show the evolution of object-oriented systems, i.e. sets of classes. Here,
versions of classes are represented by rectangles. The width and height are
used to indicate different metrics. For example, the width can be used to
show the number of methods, while the height shows the number of member
variables in the class. The evolution matrix consists of several rows. Each row
contains rectangles representing different versions of the same class at different
times. A column contains the versions of different classes at the same point
of time.

136 5 Visualizing the Evolution of Software Systems

Account

Product

Customer

Order

Catalog

ProductMenu

OrderForm

time

Fig. 5.7. Evolution matrix of a small system

The evolution matrix allows one to make observations about the evolution
of both the whole system and a single class. On the system level, for example,
one can observe the change of the system size over time caused by addition and
removal of classes and identify phases of growth, stagnation, and shrinking.
In the example shown in Fig. 5.7, there is a major leap from version 2 to 3.

On the class level, it allows one to categorize individual classes. With
the help of this visualization, Lanza identified several categories [Lan01]. The
names of these categories are the following, taken from astronomy to empha-
size a property by means of analogy to an astronomical phenomenon: pulsar,
supernova, white dwarf, and red giant. To illustrate these metaphorical cate-
gories, we briefly discuss two of them below:

Pulsar: A pulsar is a class which alternately increases and decreases in size
(or with respect to some other metric), for example the class Product in
the example. Extending the functionality typically increases the size of
the class, whereas restructuring decreases the size. The pulsar classes are
those which are at the center of the development of a system.

White dwarf: A white dwarf is a class that becomes smaller and smaller, for
example the class ProductMenu in the example. By and by, its function-
ality is moved to other classes. Eventually, the class might become super-
fluous.

5.2 Visualizing Software Archives

Both industrial and open-source projects keep track of versions and changes
using configuration management systems [CW98], for example RCS, CVS and

5.2 Visualizing Software Archives 137

List.java

Sort.java

Item.java

v1

v2 v2.1

v3 v2.2

v2.3

v1

v2

v1 v1.1

v2 v1.2 v1.2.1

r1

Releases

r2

Revisions

Fig. 5.8. 2D representation of three revision trees and releases

Subversion. Other tools keep track of additional information, for example bug
databases. The information stored by a configuration management system
and related tools is called a software archive. A software archive provides the
history of a software system.

The central part of the information in a software archive is versions of
files, including source code, documentation, and specifications (e.g. UML di-
agrams). Most archives do not store the complete versions of the source code
files, but only initial versions and differences between subsequent versions,
often called deltas. In addition, for each version, they store a comment or log
message, a time stamp, and the name of the person (author ID) who checked
the version into the configuration management system. For each version, there
can be several alternative subsequent versions, called variants, resulting from
parallel development. Several variants can be joined together into a single
successor version. As a consequence, the versions and their successor relations
form an acyclic graph, called the version graph.

A configuration is a set of versions. For each file, it contains at most one
version. Usually, the versions in a configuration can be used to build a running
implementation of the system. Often the term release is used as a synonym
for the term configuration, but mostly it is used to refer to configurations that
have been released for users.

Meta-information such as makefiles, to-do lists, bug reports, and test re-
sults is stored either in the configuration management system directly, or in
a separate database.

138 5 Visualizing the Evolution of Software Systems

Tools such as WinCVS [Str] and VRCE [Dur] show the version graph in a
vertical tree representation, which is sometimes called an explorer view (see
Fig. 5.8). In the example shown here, the versions are displayed as boxes and
the releases as ellipses.

Fig. 5.9. 3D representation of revision tree and releases

In 3D visualizations such as that shown in the paper [KC97] on VRCS,
the Z axis can be used as a time axis. Figure 5.9 shows a 3D representation
of the same revision tree as before.

Instead of representing all versions, Gall et al. visualized only the structure
of the releases [GJR99], i.e. the hierarchical decomposition of the system into
subsystems, the subsystems into modules, and the modules into programs
(actually versions of files). The color of each version indicates the release
number of the release, which indicates when it was changed for the last time
(see Fig. 5.10). The 2D visualization in the upper left of Fig. 5.10 only shows
the versions; here we can easily see that there are two files that have never
been changed after the first release.

5.3 Visualizing Structural Change

While there are many tools to visualize the structure of programs as graphs,
tools to visualize changes of these structures over time are rare. As the algo-
rithms for graph animations [DG02, GBPD04] become more mature, we shall
hopefully see more in the future.

The GEVOL system uses a force-directed layout to draw call graphs,
control-flow graphs, and inheritance graphs of Java programs [CKN+03]. In

5.3 Visualizing Structural Change 139

Rele
as

e Number

Subsystem

Modules

Versions

R
el

ea
se

N
u

m
b

er

Fig. 5.10. 3D visualization of release history

these graphs the color of the edges indicates the age, i.e. when was it last
changed. Instead of using one color scale, GEVOL uses two color scales for
two different developers, so that one can see who made the last change. In
these color scales aging is reflected by progression from the user’s color, for
example red or yellow, to blue. GEVOL uses real time instead of logical time
and thus computes one graph per day. Animation shows successive graphs
using linear interpolation for smooth transitions (see Fig. 5.11).

Fig. 5.11. GEVOL: inheritance graphs of successive versions of a Java program

140 5 Visualizing the Evolution of Software Systems

5.4 Visualizing Evolutionary Coupling

Larger software systems consist of various libraries, modules, classes, and func-
tions, in decreasing order of granularity. If we look, for example, at the function
level we shall find that functions call other functions. If a function is called by
another function, the two are coupled. So, as a simple metric for coupling, we
can just define the coupling of a function as the number of functions it calls
and the number of functions it is called by. Coupling measures the complexity
of the dependencies and, as a consequence, the more dependencies there are
the more difficult it is to understand or replace a function. We can define cou-
pling on other levels in a similar way. As a rule of thumb, software developers
should strive for low coupling, in particular at the higher levels of granularity
such as classes or modules.

In this section we look at a different form of coupling, which we call evolu-
tionary coupling1 to distinguish it from the classical kind of coupling described
above usually used in software engineering. We say that two software artifacts
such as functions, classes, or files, but also images and documentation, are evo-
lutionarily coupled if they are changed at the same time [ZDZ03]. Coupling
information can even be used to implement recommender tools that suggest
source code changes to the programmer [ZWDZ05].

Fig. 5.12. Support graph of a small project

Let A be a set of software artifacts and Sa1,a2 the number of times the
two software artifacts a1 and a2 have been changed together. We call Sa1,a2

the support count of the evolutionary coupling of a1 and a2. On the basis of
this information we can easily compute a support graph

G =
{A, {(a1, a2) | a1, a2 ∈ A and Sa1,a2 > 0}}.

1 Other authors also use the terms logical coupling, change coupling, and co-change
relation for the same concept [GHJ98, GJK03a, BN05].

5.4 Visualizing Evolutionary Coupling 141

Figure 5.12 depicts the support graph of a small project. There are two im-
portant aspects of the graph:

Existence of edges: Entities that are related are connected by edges, and sets
of entities with many interrelations form clusters. In the example graph
we see, for example, that D, E, and F are related to each other.

Absence of edges: The absence of edges indicates that entities are not related.
In the example graph we can immediately see that there are two uncon-
nected subgraphs.

Fig. 5.13. Support graph of Mozilla Firefox

Figure 5.13 shows the support graph of the Mozilla Firefox browser project.
Instead of showing the support values as numbers, we have used a force-

142 5 Visualizing the Evolution of Software Systems

directed graph layout with the support values as edge weights. As a result,
strongly coupled items are drawn next to each other. Here the software arti-
facts are files, and we have used color coding to indicate whether two artifacts
are close in the directory hierarchy.

In this example, there is a large cluster in the middle of the graph. The red
part of this cluster corresponds to the /base subdirectory. In this red part,
there are also a few light blue nodes. These outliers are

components/prefwindow/locale/pref-advanced.dtd

components/prefwindow/locale/pref-appearance.dtd

components/prefwindow/locale/pref-applications-edit.dtd

components/prefwindow/locale/pref-applications.dtd

A closer look reveals that only the file pref-advanced.dtd is related to files
in the /base directory, whereas the remaining three DTDs are related only to
the first one.

10

3

3

4

a
/a

/a

a
/a

/b

a
/a

/c

a
/b

/a

a
/b

/b

b
/a

/a

high

low

none (support = 0)

Confidence

a/a/a

a/a/b

a/a/c

a/b/a

a/b/b

b/a/a

3
/4

=
7
5
%

3/10 = 30%

10

3

3

4

a
/a

/a

a
/a

/b

a
/a

/c

a
/b

/a

a
/b

/b

b
/a

/a

high

low

none (support = 0)

Confidence

a/a/a

a/a/b

a/a/c

a/b/a

a/b/b

b/a/a

3
/4

=
7
5
%

3/10 = 30%

Fig. 5.14. Sorted axes and color-coded confidence (the numbers indicate the support
count)

Figure 5.15 shows how the coupling information can be visualized using a
matrix visualization that we call a pixelmap in what follows. In this example,
the color of the pixel at position (x, y) represents the the number of times that
two files fx and fy have been changed together relative to the total number of
times the file fx has been changed. We call this number the confidence of the
coupling. More precisely, the confidence that a2 has been changed whenever
a1 has been changed is defined as

Ca1,a2 =
Sa1,a2

Sa1,a1

.

5.4 Visualizing Evolutionary Coupling 143

Note that whereas the support count is symmetric, the confidence is not,
i.e., in general, Ca1,a2 	= Ca2,a1 .

From the pixelmap, the developer can see how strongly different files are
coupled. High confidence values are shown as red pixels, and low values as
blue pixels. White indicates that there is no coupling, i.e. the support count
is zero.

Source Code

Pictures

Icons

Patches

Tests

Fig. 5.15. Number of simultaneously changed files in DDD

As the package hierarchy typically reflects the architecture of the system,
we expect that related files will be in the same level of the hierarchy. Very
closely related files will even be in the same folder. Furthermore, we expect
that files which are related will also be changed together more often than those
that are unrelated. To add this hierarchical information to the visualization,
we lexically sort the files along the axes, including their full path name. As

144 5 Visualizing the Evolution of Software Systems

The files of
the selected
coupling are
automatically
highlighted.

Crosshairs to select
individual couplings.
Files are highlighted
and can be loaded
into the editor below.

Various options
to select and filter
the data set and
to zoom in and out.

Details of the coupling
that the mouse cursor
currently points to.

Fig. 5.16. EposPix: integration of the pixelmap visualization into the Eclipse IDE

a result, the pixels form blocks, as can be seen in the pixelmap in Fig. 5.15,
which depicts the evolutionary coupling of the DDD. These blocks indicate
that files within a directory are coupled, i.e. often changed together. Software
developers are interested mainly in the outliers. These are the pixels repre-
senting couplings between files in different directories, such as those labeled
“Patches” in Fig. 5.15. Outliers can be a sign of a bad system architecture.
In other words, if we do not find rectangular areas nicely aligned along the
diagonal in the pixelmap, then the system should be restructured.

The pixelmap visualization has been integrated as a plug-in called EposPix
into the Eclipse IDE [Ecl] and thus allows one to interactively explore the
evolutionary coupling between different files of a project (see Fig. 5.16).

5.5 Visual Data Mining

Using data-mining techniques [HK01, AS95, AS94], various kinds of rules can
be extracted from software archives. Visual data-mining techniques [Kei02]
can be used to interactively explore these rules. As an example of how data-
mining techniques work, we shall take a closer look at association rule mining.

Association rule mining is a technique to find correlations between several
items, i.e. rules that state that, for example, whenever a set of items occurs

5.5 Visual Data Mining 145

in a transaction, another set of items will occur in the same transaction with
a certain probability. What a transaction is depends on the application. For
example, a transaction can be a set of goods bought by an individual person
at the same time. For software evolution, a transaction can be a set of files
changed at the same time.

Association rules are of the form A ⇒ B, where A and B are disjoint sets.
We define the support and the confidence with respect to a set of transactions
T as follows:

Support: supp(A ⇒ B) = freq(A ∪ B).
Confidence: conf(A ⇒ B) = freq(A ∪ B)/freq(A).

In these formulas, the frequency of a set M , freq(M), is defined as |{t ∈ T :
M ⊆ t}|.

The Apriori algorithm [AS94] can be used to compute such association
rules. This algorithm takes the set of transactions and a constant, minimal
support threshold minsupp as input and yields all association rules with a
support greater than or equal to minsupp.

The algorithm works in two phases. In the first phase, it computes it-
eratively all sets of items which have a frequency greater than or equal to
minsupp. Here, “iteratively” means that first all sets with one element are
computed that satisfy the minimal-support condition. Then all sets with two
elements are computed by adding an element to the sets of the previous it-
eration and checking whether this new set still satisfies the minimal-support
condition, and so on. The iterative construction works because the frequency
is a monotonic function: A ⊆ B ⇒ freq(A) ≤ freq(B).

Let L be the set of all sets computed in the first phase that satisfy the
minimal-support condition. In the second phase, the rules are built as follows:
for each set M ∈ L all rules A ⇒ B with A, B ⊆ M , |A| > 0, |B| > 0, and
A∩B = ∅ are computed, as well as the confidence for each of these rules. For
a single set with n elements, we already obtain n ∗ (n − 1) rules.

EPOSee [BDW05] is a tool that extends the standard visualization tech-
niques for association rules and sequence rules to show also the hierarchical
order of items. Clusters and outliers in the resulting visualizations provide
interesting insights into the relation between the temporal development of a
system and its structure.

Similar to association rules, we characterize the evidence and strength of
a sequence rule using the two measures support and confidence. A sequence p
is a subsequence of another sequence q, if one can derive p from q by deleting
elements from q. Several subsequent transactions into the software archive can
be combined into transaction sequences. The support supp(s) of a sequence s
is the number of transaction sequences it is a subsequence of. The confidence
of a sequence rule s1 ⇒ s2 is then defined as

conf(s1 ⇒ s2) =
supp(s1 ∪ s2)

supp(s1)

146 5 Visualizing the Evolution of Software Systems

Fig. 5.17. EpoSee: parallel-coordinates visualization of the Mozilla Firefox project

Figure 5.17 shows a parallel-coordinates view [ID90] of the /browser di-
rectory of the Mozilla Firefox project. In this view every sequence rule is
displayed by connecting the node in the n-th column representing the n-th
item in the sequence with the node in the n + 1-th column representing the
n + 1-th item in the sequence. The items are sorted hierarchically and we can
see clusters, i.e. all rules only contain items of the same directory. The color
of a node indicates the weighted sum of the support values of the prefixes
of all rules which share this node, while the color of an edge indicates the
weighted sum of the confidences. As the nodes are ordered with respect to the
hierarchical order of the items, we see multiple clusters consisting of many
edges which relate only items in the same subdirectory. We also see that the
files base/content/browser.js and base/content/browser.xul are related
in a very interesting way to almost all Javascript and XUL files, respectively:
they are typically changed after one of those files has been changed.

5.6 Summary

In this chapter we have looked at approaches to visualizing the evolution of
software systems. First, one can use color coding to show, for an entity or a
set of entities, how the values of metrics associated with entities change over
time. Instead of using animation, one can also use the third dimension as a
time axis, as seen in the 3D version graph in Fig. 5.9. Second, one can show
how the structural relations between entities change over time by means of
animated graphs. Finally, on the basis of the assumption that two entities are
related if they are changed at the same time, one can show this relation either
using color-coding in a pixelmap or by drawing a graph.

There is much more information in software archives than current tools
exploit, because they mostly leave the exploration and analysis to the user.

Exercises 147

Exercises

Exercise 1: Read the Wikipedia article on evolution at http://wikipedia.
org/wiki/Evolution. Can you identify additional analogies between bio-
logical evolution and software evolution?

Exercise 2: On the basis of the editor TextComponentDemo.java from the
Java Swing tutorial implement a SeeSoft-like line representation simply
by allowing the user to interactively change (e.g. by means of a slider) the
font size of styled text from 1 to 32. Your program should read in two files:
one is a source code file, and the second file contains integers (0–255, one
integer per line) that represent some metrics for the source code. Color-
code the lines using the class LOCS.java from Project 1 and/or define a
blue-to-red scale on your own.

You can extend your program to animate program evolution by having
it read in more than two files (and, for each, file a metrics file). Then,
show the sequence of color-coded visualizations in a thread or provide a
slider for the user to interactively select the point in time to be shown;
redraw the visualization while the slider is being dragged.

Exercise 3: Evolutionary-coupling data forms a graph that can be represented
using both a node link diagram as in Fig. 5.13 or a pixelmap representation
as in Fig. 5.15. Can you think of advantages and disadvantages of each
of the two representations? Which one would you prefer, for example, for
dense, sparse, small, or large graphs? Which one is better suited to finding
regularities or outliers?

6

Evaluation

In this chapter we look at evaluation methods that have been used to assess
various properties of software visualizations. We discuss both quantitative
and qualitative methods, with a focus on the latter. We then take a closer
look at the question of how one can evaluate the learning effectiveness of an
algorithm animation and, finally, discuss some evaluation results that have
been published on the learning effectiveness of algorithm visualizations.

6.1 Claims About Visualization Techniques

Section 2.1 presented several general reasons for using visualization techniques
from a cognitive-psychological point of view. But this does not imply that
every software visualization is per se a helpful tool. For each particular vi-
sualization technique, and indeed for each use of it for a particular task, we
have to assess its usefulness. To this end, one has to make explicit what
“useful” means. The primary goal of visualization is to convey information.
It should convey this information in an understandable, effective, easy-to-
remember way. These properties of the visualization are often compared to
text-based representations of the same information.

Typical problems with evaluations of visualization techniques are the use
of toy data sets, and the generation of visual artifacts that suggest nonexistent
relations. But, above all, many evaluations are biased because they have been
done by the developers of the visualization.

6.2 Quantitative Evaluation

Quantitative methods measure properties of the visualization or of the algo-
rithm, or properties of the human observer interacting with the visualization.
Typical questions about a visualization or algorithm are “How much infor-
mation fits on the screen?” and “How fast does the algorithm compute the

150 6 Evaluation

visualization?” Typical questions about the human observer include “How fast
does the observer react?”, “How much of the information does the observer
remember?”, and, in particular, in educational settings‘, “How many tasks
were performed correctly?”

Quantitative evaluation requires a statistical analysis of the results of a
controlled experiment. An experiment can be described by a set of factors
or variables. Factors that are controlled by the person who designs the ex-
periment are called independent, whereas recorded values, such as answers
to questions, are called dependent factors. Finally, there are what are called
covariate factors, such as age or previous knowledge, which can have some
influence on the outcome of the experiment and should be recorded as well.

After the experiment, the resulting data set can be used for descriptive
and inferential statistical analyses. Typical statistical measures to describe
the central tendency of the data set are its median and mean, and typical
measures to describe the dispersion of the data set are its standard deviation
and variance.

Inferential statistics tries to assess to what extent observed properties of
the data set might have happened by chance. One of the most common meth-
ods of inferential statistics is to have two test groups and to compare their
performance using a T-test.1 A T-test determines whether the difference be-
tween the means of the two groups is statistically significant. Intuitively, a
result is statistically significant if the probability that it is wrong is below a
given value, sometimes called the α level. An α level of 5% has become widely
accepted.

Some authors argue that in software engineering research it would be bet-
ter to simply provide the error probability and leave the decision of whether
it is “significant” to the reader [PPV00]. On the one hand, for safety-critical
applications, an extremely low α level would be important. On the other hand,
in situations where no better information is available, even an α level of 40%
may still help to make a decision.

6.3 Qualitative Evaluation

Qualitative methods gather data about the individual experience of human
observers with the visualization. This experience is verbalized in the form
of introspective reports. Ericsson and Simon found that think-aloud reports
during the task are more reliable than recall protocols [ES80].

When it comes to the human perception of and interaction with a vi-
sualization, qualitative evaluation methods are of the outmost importance
for various reasons [McC93], including the fact that they require fewer test
persons and cover more aspects of the visualization. In contrast, to achieve
significant results, quantitative evaluations require that a sufficient number of
participants perform a controlled experiment
1 For more than two groups, a common method is ANOVA (analysis of variance).

6.3 Qualitative Evaluation 151

Qualitative methods are in particular useful for formative evaluation. Here
the goal is to improve a program under development.

6.3.1 Evaluation Based on Gestalt Theory

Sun and Wong have developed a set of 14 criteria for the evaluation of UML
layouts [SW05]. On the basis of these criteria, they evaluated two commercial
UML tools (Borland Together and Rational Rose). Their criteria were based
mostly on gestalt-theoretical principles (see Sect. 2.1.4). These principles can
be broadly characterize as guiding either the perceptual organization or the
perceptual segregation of objects. The former is related to the question of
which objects belong together, whereas the latter is related to the question of
how a figure separated from the background.

The gestalt-theoretical principles that are important for perceptual orga-
nization are simplicity (the use of a suggestive figure), similarity, proximity,
familiarity (meaningfulness), and connectedness. For perceptual segregation,
symmetry, orientation, and contour play a crucial role.

Fig. 6.1. UML diagrams: separate vs. joined inheritance arcs and association classes
vs. labeled association links

For the perceptual organization of UML layouts, Sun and Wong suggested,
for example, the following three criteria (see Figure 6.1):

• Inheritance arcs should be joined rather than separated (simplicity).
• An association name should be set beside the line, rather than in another

association class linked to the line.
• The layout should only show selective information, i.e. information that

suits the purpose.

For the perceptual segregation of UML layouts, they suggested, for ex-
ample, the criterion that overlapping should be avoided, because overlapping
will destroy the contours of objects and they will become difficult to recognize
(contour and connectedness).

152 6 Evaluation

6.3.2 Task-Oriented Evaluation

We all know about task-oriented analysis from computer magazines: we all
know task-oriented analysis: software products from different vendors are com-
pared in large tables by listing features and other properties such as prices
and licenses, but, more importantly, tasks which are typical of the application.
For each product, the table indicates what tasks it supports and possibly even
how well it supports each task.

Task-oriented analysis is very popular, because it does not require too
much effort, while it actually provides an answer to a key question from a
user’s point of view: Does the system solve the user’s problem?

Pacione et al. performed a task-oriented evaluation of five dynamic visu-
alization tools [PRW03], ranging from visual debugging to UML tools that
generate sequence diagrams. For their analysis, they came up with nine large-
scale and six small-scale tasks which are typical of software comprehension.
The former set of tasks included, for example, finding design patterns that
have been applied in the subject system, and or reconstructing the high-level
structure of the subject system. The small-scale tasks included finding the
collaborations of a small set of objects, and how the state of a specific ob-
ject changes. Pacione et al. concluded that none of the tools in their study
supported all tasks at all levels and that combining static and dynamic infor-
mation might lead to better results (see also Sect. 4.3).

The cognitive walkthrough is a task-oriented technique for evaluating the
usability of a system. The technique is named in analogy to code walkthrough
in software engineering. When performing a cognitive walkthrough one keeps
track of the user’s thought processes, decision making, and memory load at
each step when the task is performed [WRLP94, PLRW92].

6.3.3 The Cognitive-Dimensions Framework

The cognitive-dimensions framework [GP96, BG03] is a qualitative and often
formative evaluation method to assess (interactive) tools for storing, manipu-
lating, and displaying information, or, as the authors of the framework put it,
they are “a set of discussion tools for use by designers and people evaluating
designs”. Six types of generic tasks are distinguished:

Incrementation is the task of adding information to a system or document.
Transcription is the task of transforming information from one representation

to another.
Modification refers to the changing of information or its representation.
Exploratory design is the task of sketching new representations without know-

ing the solution in advance.
Searching is the task of looking for a known piece of information.
Exploratory understanding is the task of discovering the overall structure of

the information.

6.3 Qualitative Evaluation 153

Table 6.1. Cognitive-dimensions profiles of four generic tasks

Viscosity Hidden
dependencies

Premature
commitment

Visibility

Exploratory design Harmful Acceptable Harmful Important
Modification Harmful Harmful Harmful Important
Incrementation Acceptable Acceptable Harmful Useful, nonvital
Transcription Acceptable Acceptable Harmful Useful, nonvital

Evaluation using the framework works as follows. First, one has to identify
what generic tasks the user will perform with the system. Then, for each task,
one has to assess how it fits each cognitive dimension. This leads to an observed
profile for each task, which can be compared with an ideal profile listed in the
cognitive dimensions tutorial [BG]. Table 6.1 shows the profiles of four generic
tasks based on four of the 14 cognitive dimensions listed in Table 6.2.

Table 6.2. List of cognitive dimensions

Cognitive dimension Description

Viscosity Resistance to change
Visibility Ability to view components easily
Premature commitment Constraints on the order of doing things
Hidden dependencies Important links between entities are not visible
Role expressiveness The purpose of the entity is readily inferred
Error-proneness The notation invites mistakes and the system gives

little protection
Abstraction Types and availability of abstraction mechanisms
Secondary notation Extra information in means of other than formal syn-

tax
Closeness of mapping Closeness of representation to domain
Consistency Similar semantics are expressed in similar syntactic

forms
Diffuseness Verbosity of language
Hard mental operations High demand on cognitive resources
Provisionality Degree of commitment to actions or marks
Progressive evaluation Work-to-date can be checked at any time

As an example, consider the Creole plug-in that analyzes a Java program
and produces various kinds of diagrams such as those shown in Sect. 3.4.4.
With respect to most of the cognitive dimensions, Creole is well designed.
Considering visibility, for example, boxes can be expanded by simply clicking
on a box to show its components. On the other hand, the expressiveness of
the graphical representation is very restricted: classes, packages, methods,
and attributes are all represented by boxes and the semantics of a box can
be inferred from the context. Furthermore, the viscosity of Creole is high.

154 6 Evaluation

When the source code changes, for example when a class is renamed, the class
hierarchy has to be recomputed, and a new layout of the diagram is computed
that can be quite different from the previous one.

For each of the dimensions, the cognitive dimensions tutorial [BG] provides
a definition; one or more thumbnail examples; a more detailed explanation; the
cognitive relevance of the dimension, in particular with respect to the generic
tasks; cost implications; more detailed examples; workarounds; remedies; and
trade-offs.

6.4 Educational Evaluation

Learning scenarios such as those described in Sect. 4.4.8 have been developed
with the goal of facilitating understanding and learning of an algorithm. But
the question arises of whether they really achieve this goal. In other words,
the learning effectiveness has to be evaluated. To this end, user studies have
to be performed.

We shall illustrate the various aspects of the design of a study by examples
taken from an evaluation that we did several years ago for an interactive
animation of a generation algorithm for finite automata which we briefly called
GANIFA [GAN].

The screen dump in Fig. 6.2 shows how the generation process of a lexical
analyzer is visualized by GANIFA. This example shows the conversion of
a regular expression (a|b)∗ into an appropriate nondeterministic finite-state
automaton (RE → NFA). The generator has been integrated into an applet
for visualizing the generation and computation of finite automata, which has
been used in an electronic textbook on the theory of finite automata [Gan00].

Design of a Study

For a study of learning effectiveness, two key decisions have to be made: what
kind of experiment will be performed, and who will be the test persons?

Test Persons Obviously, the test persons should belong to the target group
of the learning scenario, for example, one can hardly evaluate a textbook
for children with adult test persons. On the other hand, a sufficient and, in
particular, representative number of members of the target group are often
not available as test persons. Therefore many studies on algorithm animation
have been done with psychology or computer science students and as a result
are biased to some extent. After the test persons have been chosen, one has to
split them into two ore more groups. These groups then use alternative means
to learn about an algorithm. The simplest approach to forming these groups
is to assign test persons randomly to groups. In the evaluation of GANIFA we
had about 118 first-year computer science students, split randomly into four
groups. Later it turned out that in some groups there were considerably more
students with very good high-school grades in mathematics.

6.4 Educational Evaluation 155

Fig. 6.2. GANIFA: animation of the generation of a finite automaton

156 6 Evaluation

If one has only a small number of test persons, one can try to prevent
such unexpected effects by performing a pre-test first and taking the results
of the test into account when forming the groups: for example, one may use
the same numbers of people with good and bad pre-test results in each group.

Factors Now one can perform the actual experiment. In general terms, the
goal of such an experiment is to find a relation between independent vari-
ables, i.e. the controlled factors, and dependent variables, i.e. the measured
factors. To this end, the experiment is performed with several different val-
ues of the independent variables for each test group, and the changes in the
dependent variables are recorded. Assuming n independent variables with m
different values for each of these variables, one would need n ∗ m test groups
with a sufficient number of persons per group to allow statistically significant
results. So, as a matter of fact, most studies have concentrated on one or
two independent variables. For example, learning efficiency is typically inves-
tigated by comparing different learning scenarios, i.e. the learning scenario is
the independent variable.

In the GANIFA evaluation [Ker04, DK01], the independent variable inves-
tigated was the learning medium. We chose four media: a learning-software
package with fixed animations, a learning-software package with generated an-
imations depending on the students’ inputs, a textbook, and a conventional
lecture.

Measurement As we are interested in learning efficiency, we need appropriate
measures. One approach is to measure performance during the experiment, i.e.
to capture the students’ behavior with traces or video recording. Instead or in
addition, one can do post-tests, i.e. after the experiments the students have
to answer a set of questions. With these questions, one tries to measure the
students’ conceptual or declarative knowledge, for example their understand-
ing of the abstract properties of an algorithm, and their procedural knowledge
or skills, for example their understanding of the procedural, step-by-step be-
havior of an algorithm. With a pre-test, one can see what the students knew
beforehand, and in combination with the post-test results, one can measure
the improvement or increase of knowledge.

For the GANIFA evaluation, we performed both pre- and post-tests to
see whether the students’ knowledge and skills had improved. In these tests,
we had knowledge questions about conceptual and procedural understand-
ing, transfer questions asking the students to transfer/apply knowledge in a
different context, and open questions, where students could make comments
and suggestions. Open questions are very important for identifying factors
and problems that one was not aware of when designing the study. Below are
some example questions from the GANIFA evaluation:

6.5 Some Interesting Empirical Results 157

Pre-test

Do you know what finite automata are?
Which words belong to the language defined by the regular expres-
sion (ab)∗?

Post-test

Knowledge question
Which words belong to the language defined by the regular expres-
sion ab∗a?

Transfer question
We add the notation r+ to our regular-expression language, where
r is a regular expression, such that L(r+) = {wn|w ∈ L(r), n ≥ 1}.
For example, L(a+) = {a, aa, aaa, . . . }. Give a construction rule for
a transition diagram of an NFA.

Open question:
What properties of the animation helped you to better understand
the generation algorithm?

Learning Theories While it might be sufficient for a designer of an algorithm
animation to see that it helps learning, cognitive scientists have the more am-
bitious goal of trying to explain why. To this end, they try to apply existing
learning theories or create new ones which address issues such as the corre-
spondence of the graphical metaphors and the mental model, the use of both
hemispheres of the brain, and the active construction of subjective knowledge
by the test person.

6.5 Some Interesting Empirical Results

In this section, we discuss several empirical studies related to various fields of
software visualization.
Algorithm animation In a metastudy performed by Hundhausen et al., more
than 40% of the 24 studies considered did not find significant results [HDS02].
Several studies found that electronic learning material (multimedia or hyper-
media) with algorithm animations outperformed lectures. The comparisons
with textbooks are less clear. But the most important result of the metastudy
was that the form of the learning exercise is actually more important than
the quality of the visualizations used:

Thus, according to our analysis, how students use AV [algorithm visu-
alization] technology, rather than what students see, appears to have
the greatest impact on educational effectiveness.

158 6 Evaluation

In particular, algorithm visualizations were efficient in scenarios were students
had to actively solve prediction and programming exercises.

Static Program Visualization and Visual Programming There have also been
many empirical studies about the use of diagrams for programming. For Lab-
View, a widely used visual programming language, Green and Petre [GP92]
found, in a quantitative study, that in most cases the diagrams were more
difficult to understand than a textual representation, for both occasional and
experienced users. Similar experimental results had been already reported
about flowcharts in 1977 [SMMH77], but about ten years later, in a replicated
experiment [Sca89] using time as an additional dependent variable, it turned
out that flowcharts outperformed source code for algorithm comprehension.

Visual debugging Jones et al. evaluated the effectiveness of the Tarantula
tool [JHS02, Tar] not with test persons, but by applying the system to dif-
ferent versions of the same program with different faults and assessing how
many of the faulty and nonfaulty statements were colored reddish. In their
experiments, they applied 1000 test cases to 60 different versions of a pro-
gram with 9500 lines of code. Of these, 20 versions contained a single (known)
fault, 10 versions two faults, 10 versions three faults, 10 versions four faults,
and 10 version five faults. They found that fewer than 20% of the nonfaulty
statements were colored in the reddest 20% of colors used. While the major-
ity of faulty statements were colored in a reddish color, they also found that
with an increasing number of faults, the number of reddish-colored faulty lines
decreased.

Class Diagrams Irani and Ware have performed several experiments to com-
pare UML diagrams and geon diagrams (see Sect. 3.4.2 for more details on
geon diagrams). In one experiment [IW00], they first showed a UML or geon
diagram for 15 seconds to the test persons, and then they presented them with
diagrams of substructures and asked whether these occurred in the original di-
agram. All diagrams were shown on the computer screen and the test persons
had just to press the “Y” or “N” key. In this experiment the average iden-
tification time was 4.3 seconds for geon diagrams, but 7.1 seconds for UML
diagrams. But, even more importantly, the error rate was only 13% for geon
diagrams, compared with 26% for UML diagrams. Thus the identification of
substructures was much faster and more accurate with geon diagrams.

In another experiment [IW04], the test persons were given a problem de-
scription and four UML or geon diagrams. The task was to decide which one
of the diagrams was created for that problem. In this experiment the average
error rate was 15% for geon diagrams and 36% for UML diagrams.

Graph Drawing For more than a decade, Helen Purchase has performed em-
pirical studies related to the aesthetics of graph layouts. Whereas in earlier
work she found that reducing the number of edge crossings was the most im-
portant aesthetic consideration [PCJ96, Pur97], in recent work continuity also
turned out to be an important factor [WPCM02]. Here, continuity means the

6.6 Summary 159

sum of the angular deviations of the incoming and outgoing edges for each
node on a path. If the edges on a path form a straight line, the path has a
continuity of 0 degrees. In Fig. 6.3 the path from node A to C has a continuity
of 0 degrees, whereas the path from A to E has a continuity of 180 degrees.

Fig. 6.3. Angular deviations along a path

In one of her experiments, test persons were asked to identify the shortest
path between two highlighted nodes. For each graph shown, the values of
several variables were recorded: the response time rt, the shortest path length
spl in terms of the number of edges, the continuity con of the shortest path in
degrees, the number of edges that cross the shortest path cr, and the number
of branches br from the intermediate nodes on the shortest path. Some other
properties, such as the total number of edge crossings, that turned out to be
not significant using an α level of 5% were also recorded. By stepwise multiple-
regression analysis the following relation was obtained between these variables
with a regression correlation coefficient R2 = 0.784:

rt = 0.414 spl + 0.406 con + 0.317 cr + 0.172 br (6.1)

This indicates that the response time increases with the length of the shortest
path, but also with its continuity and the number of crossings on this path.

6.6 Summary

There have been quite a lot of studies related to algorithm visualization sys-
tems in education. This is unfortunately not the case for other areas of soft-
ware visualization. The lack of empirical studies is a shortcoming no only of
software visualization research, but also of software engineering and computer
science in general [Tic98]. In a survey of 400 research articles [TLPH95], Tichy
et al. found that more than half of the software engineering papers were not
experimentally validated.

As quantitative evaluations that involve human test persons are very time-
consuming, at least qualitative evaluations should be performed during the
design of visualization tools or posthoc.

160 6 Evaluation

Only a few software visualization systems exist that support the devel-
opment of large software systems with the large, distributed teams of pro-
grammers that are common in the software industry today. The evaluation of
industrial software visualization is full of open questions for empirical studies.
To what extent has software visualization been applied effectively in industry?
Does it keep its promises of increased productivity and decreased development
and maintenance costs?

Exercises

Exercise 1: Design a controlled experiment to evaluate whether a tool such as
those discussed in Sect. 3.4.4 can help a user to understand the source code
of a given software system better than by reading only the textual repre-
sentation of the source code itself. What are the independent, dependent,
and covariate variables in your experiment?

Exercise 2: In Exercise 2 of Chap. 4 you had to implement a visualization of
an algorithm for the scheduling of independent tasks. Now imagine that
you had to evaluate the learning effectiveness of your visualization. To this
end, you would have to design a pre- and a post-test. Suggest at least a
pre-test question, a knowledge question, a transfer question, and an open
question for such a questionnaire.

Exercise 3: Use the cognitive-dimensions framework to evaluate a software
visualization system of your choice, preferably one that you have access
to. For example, you could evaluate a tool that analyzes a Java program
and produces a UML class diagram such as those discussed in Sect. 3.4.4.
Do all dimensions apply to the system that you have chosen?

7

Conclusions

7.1 The Visualization Pipeline – Revisited

In the first chapter of this book we introduced the visualization pipeline,
emphasizing that software visualization tools typically have to address all
three phases: data acquisition, analysis, and visualization. We now give a
quick summary of the various techniques and data sources used in the various
fields of software visualization covered in this book:

Static program visualization: The starting point for static program visualiza-
tion is typically the source or machine code of a program. For some vi-
sualizations, such as pretty printing or Jackson diagrams, a syntactical
analysis is sufficient. Further analyses include control-flow and data-flow
analysis. Annotated graph diagrams are the prevalent representation here.
For example, to support optimization of real-time applications, one can
highlight critical paths in such graphs. Instead of nodes and edges, Nassi–
Shneiderman diagrams use containment and neighborhood, i.e. nested and
attached boxes.

Dynamic program visualization: Instrumentation of the source, intermediate,
or binary code is the main data acquisition method. For algorithm ani-
mation, identifying interesting events is a widely used manual instrumen-
tation technique. The actual data is gathered at run time, which includes
direct access to program memory. Filtering, for example of events, can be
used to reduce the amount of available runtime data. Visualization of the
dynamic information is based either on accumulation, spatial projection,
or (smooth) animation using primitive graphical objects such as boxes,
lines, and circles, as well as 3D computer graphics.

Visual debugging: Visual debugging is in fact a special case of dynamic pro-
gram visualization. In addition to the source or machine code, input data
(test cases) and direct access to program memory (registers, stacks, and
heaps) are important. The analysis is either left to the user, for exam-
ple by setting break points or interactively unfolding data structures, or

162 7 Conclusions

automated, for example extraction of memory graphs or reference pat-
terns. Dicing, i.e. the computation of the difference between two slices
(here memory slices or execution slices), is another important analysis
technique. Graph representations are used to visualize the program state
graph representations are used, whereas the results of test cases are shown
as color-coded program text.

Software architecture: For the visualization of software architectures, the doc-
umentation is used in addition to the source code. Static and dynamic
program analyses are used to compute software metrics. Aggregation is
an important technique for reducing the size of the resulting, typically
graph-based visualizations. Software metrics are indicated by color cod-
ing in these graphs. Recently, several 3D visualizations based on real-world
metaphors have been developed.

Software evolution In addition to the static and dynamic information used in
the above techniques, information about the development process is ex-
tracted from software repositories, mailing lists, and bug databases. Some
of the classical program analyses can be extended to work on several ver-
sions of a program; this is called multiversion program analysis. Statisti-
cal analyses and, in particular, (visual) data-mining techniques have been
applied to deal with the enormous amount of data. The temporal aspect
of evolution is often visualized only by accumlation, for example in the
pixelmap visualization, or by a time axis in two- and three-dimensional
diagrams. In some cases animated color-coded program text or graphs
have been used.

Whereas the original research on software visualization tried to produce
visualizations of either the source code or the data structures at run time,
later work included results of program analyses, and more recent work has
integrated other sources of information such as software repositories and bug
databases. As different as the information sources are the analysis methods,
ranging from syntactical analysis through static and dynamic program anal-
ysis to data mining.

From the early days of software visualization, graphs have played a major
role – even in text-based displays. With the availability of better displays, color
coding, animation, and 3D representations have been investigated, indicating
that research has often been more driven by technology than actually trying
to address the user’s needs.

While there exists a lot of work on evaluating algorithm animations that
even allows one to perform metastudies, other areas of software visualization
research lack such evaluations. In Chap. 6 we discussed several qualitative
approaches that may be used to assess the quality of software visualization
tools with moderate effort.

7.2 Further Reading and Resources 163

7.2 Further Reading and Resources

There exist many more approaches and tools than we have covered in this
book. Table 7.1 lists some more software visualization tools. The proceedings
of the ACM Symposia on Software Visualization (SOFTVIS), the IEEE Work-
shops on Visualizing Software for Understanding and Analysis (VISSOFT),
and the IEEE Symposia on Information Visualization, as well as several an-
thologies [SDBP98, Die02b, Zha03], are valuable resources for finding more
information on software visualization research.

Table 7.1: Some software visualization tools

Tool Availability URL

Static program visualization

AiCall Commercial http://www.aisee.com/aicall/

CodeSurfer Commercial http://www.grammatech.com/products/

codesurfer/index.html

jGrasp Research http://www.eng.auburn.edu/grasp/

OptimalAdvisor Commercial http://javacentral.compuware.com/

products/optimaladvisor/

Portable Bookshelf Research http://swag.uwaterloo.ca/pbs/

Source-Navigator Open source http://sourcenav.sourceforge.net/

VISTA Research http://www.cigitallabs.com/

research/demos/vista/

Visualize it! Commercial http://www.powersoftware.com/vz/

Algorithm animation

DsCats Research http://www.cs.arizona.edu/dscats/

dscats.html

Jeliot Research http://cs.joensuu.fi/jeliot/

LEONARDO Research http://www.dis.uniroma1.it/

~demetres/Leonardo/

MatrixPro Research http://www.cs.hut.fi/Research/

MatrixPro/

POLKA Research http://www.cc.gatech.edu/gvu/

softviz/parviz/polka.html

SAMBA Research http://www.cc.gatech.edu/gvu/

softviz/algoanim/samba.html

Visual debugging

DDD Open source http://www.gnu.org/software/ddd/

IDA Commercial http://www.datarescue.com/idabase/

Jinsight Research http://www.alphaworks.ibm.com/tech/

jinsight

Logiscope Commercial http://www.telelogic.com/products/

tau/logiscope/

Continued on next page

164 7 Conclusions

Table 7.1 – continued from previous page

Tool Availability URL

TuningFork Research http://www.alphaworks.ibm.com/tech/

tuningfork

TimeMachine Commercial http://www.ghs.com/products/

timemachine.html

Tarantula Research http://www.cc.gatech.edu/aristotle/

Tools/tarantula/

Web Services Nav-
igator

Research http://www.alphaworks.ibm.com/tech/

wsnavigator

xSlice Commercial http://www.cleanscape.net/products/

testwise/tools_xslice.html

Software architecture

ArgoUml Open source http://www.argouml.org/

BlueJ Research http://www.bluej.org/

ESS-Model Open source http://essmodel.sourceforge.net/

Fujaba Tool Suite Research http://www.uni-paderborn.de/cs/

fujaba/

GOOSE Research http://esche.fzi.de/PROSTextern/

software/goose/

GoVisual Commercial http://www.oreas.com/

Imagix Commercial http://www.imagix.com/

JarInspector Research http://www-pr.informatik.

uni-tuebingen.de/c/forschung/uml/

jarinspector.xml

RIGI Research http://www.rigi.csc.uvic.ca/

SHriMP Research http://www.thechiselgroup.org/

shrimp

Sotograph Commercial http://www.software-tomography.com/

html/sotograph.htm

SugiBib Research http://www.sugibib.de/

Surveyor Commercial http://www.lexientcorp.com/

VizzAnalyzer Research http://www.arisa.se/index_tools.

html

yDoc Commercial http://www.yworks.de/en/products_

ydoc.htm

Software evolution

CodeCrawler Research http://www.iam.unibe.ch/~scg/

Research/CodeCrawler/

EpoSee Research http://www.eposoft.org/eposee

CCVisu Research http://www.cs.sfu.ca/~dbeyer/

CCVisu/

Visual Code Navi-
gator

Research http://www.win.tue.nl/~lvoinea/VCN.

html

VRCE Commercial http://www.aicas.com/vrce_en.html

Continued on next page

7.3 The Future of Software Visualization 165

Table 7.1 – continued from previous page

Tool Availability URL

Graph drawing

AGD Research http://www.ads.tuwien.ac.at/AGD/

aiSee Commercial http://www.aisee.com/

DGD Research http://www.st.uni-trier.de/GD

GraphViz Open source http://www.graphviz.org/

yFiles Commercial http://www.yworks.de/

7.3 The Future of Software Visualization

In 2002, I wrote a chapter introduction titled “Future Perspective” for an
anthology on software visualization [Die02b]. There, I identified the following
four challenges to increase the impact of software visualization research in the
future:

Breaking New Ground [. . .] We expect that exploring all aspects at
all layers of software will lead to synergies and thus will ultimately
stir the traditional areas of software visualization as well.
Integration Software visualization will be doomed to remain an aca-
demic endeavor if we do not succeed in integrating it into working
environments and thus into the work flow of programmers, designers
and project managers. [. . .]
Theory [. . .] Based on such empiric data, cognitive and pedagogical
theories can be formulated and validated. Ultimately, these should
guide the design and use of future software visualization systems.
Forum [. . .] The software visualization community needs a forum in
which to share best practices and to promote the state of the art.

Since 2002, some of these challenges have been met, or at least partially
met. For example, the ACM Symposium on Software Visualization (SOFT-
VIS) has been established as such a forum, and many software visualiza-
tion tools have been integrated as plug-ins into the Eclipse development plat-
form [Ecl]. Other challenges remain, and new ones have arisen. Here are some
challenges for the coming years:

Visual standards In scientific visualization such as medical imaging, there is
a physical analog. In software visualization we lack this physical analog
and have to resort to metaphors. While it makes sense for researchers
to explore the whole design space, in order to achieve wide adoption of
software visualization in practice it is important that there are established
visual standards, such that the user’s effort in learning how to interpret
them pays off.

166 7 Conclusions

Automatic focusing: Information visualization researchers have come up with
many kinds of focus + context visualizations (see Sect. 2.3), and some
of these techniques have already been adapted for software visualization.
While these techniques provide a means to show some parts of the infor-
mation in more detail, there are few techniques (see Sect. 4.6.1) on how
to automatically decide what these parts are.

Structural change: The structure of both data structures and program code is
mostly visualized as graphs. While data structures change during program
execution, program code changes during the evolution of the software sys-
tem. For small graphs, these changes can be shown using graph animation.
For larger graphs, these animations are confusing. Either one has to de-
velop automatic focusing techniques to reduce the size of the graphs, or,
alternatively, find static visualizations of changes.

Continuous navigation: Early on, the importance of smooth animations for
showing state transitions in algorithm animation has been realized [Sta90b].
But smooth animations are not only important for dynamic program visu-
alization but also for static program visualization. For example, in reverse
engineering tools, it could improve continuous navigation from lower levels
of abstraction to higher levels and vice versa.

Algorithm explanation: How can we visually execute real programs with ab-
stract data (see Sect. 4.4.7)? For visual debugging, it might be useful to
execute a program with real data to a breakpoint or specified line, and to
continue by stepping through the program using abstract data.

Real-time systems: Currently, few dynamic visualizations of real-time systems
go beyond capturing real-time events and showing time-series [BCF+06,
Gre]. For example, one could augment static program visualizations with
both static and dynamic analysis results for comparing theoretical worst-
case execution times, paths, and memory usage with those estimated on
the basis of several test runs.

3D visualization In modern computer games, 3D graphics and narrative ele-
ments help the user to find her way through the virtual worlds. Recently,
for every major operating system, 3D desktops have been released, or at
least some animated 3D effects have been added to the old 2D desktop.
Today’s software visualization tools do not even exploit the graphics power
of an average PC or laptop. 3D visualization may fulfill its promises (see
Sects. 3.4.5 and 4.4.5, for example), once we turn to post-WIMP1 inter-
faces which will certainly be three-dimensional and involve other interac-
tion devices like gaze and motion tracking.

End-user visualization: Today, software visualization tools are used by soft-
ware developers. Some kinds of visualizations may be helpful for end-users
who want to get some information about an application that they are us-
ing. For example, they may want to know what components are required
for this application, and what are licences of these components, how much

1 WIMP stands for windows, icons, menus and pointing device.

7.3 The Future of Software Visualization 167

of the functionality the user is actually using, and what resources such as
network or external storage does each of the components access.

Trusting software This is an instance of the previous challenge. Is it possible
to analyze and visualize the flow of information in a distributed appli-
cation such that the user trusts the application not to leak confidential
information. For example, before using a Web service (see Sect. 4.6.3),
the user might want to make sure that her credit card information is only
passed through trusted intermediate Web services.

References

[AH98] Keith Andrews and Helmut Heidegger. Information slices: Visualising
and exploring large hierarchies using cascading, semi-circular discs (late
breaking hot topic paper). In Proceedings of the IEEE Symposium on
Information Visualization (INFOVIS’98), pages 9–12, Research Trian-
gle Park, NC, 1998.

[Ang] AbsInt Angewandte Informatik GmbH. Call graph visualization and
stack usage analysis. http://www.aisee.com/aicall/.

[AS94] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining
association rules. In Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo,
editors, Proceedings of the 20th Very Large Data Bases Conference
(VLDB), pages 487–499, San Francisco, CA, 1994. Morgan Kaufmann.

[AS95] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential pat-
terns. In Philip S. Yu and Arbee S. P. Chen, editors, Eleventh Inter-
national Conference on Data Engineering, Taipei, Taiwan, pages 3–14,
Washington, DC, 1995. IEEE Computer Society Press.

[AWP97] Keith Andrews, Josef Wolte, and Michael Pichler. Information pyra-
mids: A new approach to visualising large hierarchies. In Proceedings
of IEEE Visualization97, 1997.

[Bae73] Ronald Baecker. Towards Animating Computer Programs: A First
Progress Report. In Proceedings of the Third NRC Man-Computer
Communications Conference, 1973.

[Bae81] Ronald Baecker. Sorting Out Sorting. 30 minute color film (developed
with assistance of Dave Sherman, distributed by Morgan Kaufmann,
University of Toronto), 1981.

[BCF+06] David F. Bacon, Perry Cheng, Daniel Frampton, David Grove,
Matthias Hauswirth, and V. T. Rajan. Demonstration: On-line visu-
alization and analysis of real-time systems with TuningFork. In Alan
Mycroft and Andreas Zeller, editors, Proceedings of 15th International
Conference on Compiler Construction (CC 2006), Vienna, Austria,
March 30–31, volume 3923 of Lecture Notes in Computer Science, pages
96–100. Springer, 2006.

[BD05] Michael Balzer and Oliver Deussen. Voronoi treemaps. In Proceedings
of the IEEE Symposium on Information Visualization (InfoVis 2005),

170 References

23–25 October 2005, Minneapolis, MN, Washington, DC, 2005. IEEE
Computer Society Press.

[BDW05] Michael Burch, Stephan Diehl, and Peter Weißgerber. Visual data
mining in software archives. In Proceedings of ACM Symposium on
Software Visualization (SOFTVIS05), St. Louis, MO, New York, NY,
May 2005. ACM Press.

[BE95] Marla J. Baker and Stephen G. Eick. Space-filling software visualiza-
tion. Journal of Visual Languages and Computing, 6(2):119–133, 1995.

[BE96] Thomas Ball and Stephen G. Eick. Software Visualization in the Large.
IEEE Computer, 29(4):33–43, 1996.

[BG] Alan F. Blackwell and Thomas R. G. Green. Cognitive dimensions
resources (including tutorial). http://www.cl.cam.ac.uk/~afb21/

CognitiveDimensions/.
[BG03] Alan F. Blackwell and Thomas R. G. Green. Notational systems –

the cognitive dimensions of notations framework. In J. M. Carroll, edi-
tor, HCI Models, Theories and Frameworks: Toward a multidisciplinary
science, pages 103–134. Morgan Kaufmann, San Francisco, 2003.

[BHK+02] Andrew P. Black, Jie Huang, Rainer Koster, Jonathan Walpole, and
Calton Pu. Infopipes: an abstraction for multimedia streaming. Mul-
timedia Systems, 8(5):406–419, 2002.

[BHvW00] Mark Bruls, Kees Huizing, and Jarke J. van Wijk. Squarified treemaps.
In Proceedings of Joint IEEE TCVG Symposium on Visualization,
pages 33–42, Vienna, 2000. IEEE Computer Society Press.

[BK01] Sarita Bassil and Rudolf K. Keller. Software visualization tools: Survey
and analysis. In Proceedings of the Ninth International Workshop on
Program Comprehension (IWPC2001), pages 7–17, Toronto, Canada,
2001.

[BL76] Laszlo A. Belady and Meir M. Lehman. A model of large program
development. IBM Systems Journal, 15(3):225–252, 1976.

[BM89] Ronald M. Baecker and Aaron Marcus. Human factors and typography
for more readable programs. ACM Press, New York, NY, USA, 1989.

[BM98] Ronald M. Baecker and Aaron Marcus. Printing and publishing C pro-
grams. In John Stasko et al., editor, Software Visualization – Program-
ming as a Multimedia Experience, pages 45–61. MIT Press, Cambridge,
MA, 1998.

[BN93] Marc H. Brown and Marc Najork. Algorithm animation using 3D inter-
active graphics. In Proceedings of ACM Symposium on User Interface
Software and Technology, Atlanta, pages 93–100, New York, NY, 1993.
ACM Press.

[BN96] Marc Brown and Marc Najork. Collaborative active textbooks: A Web-
based algorithm animation system for an electronic classroom. In Pro-
ceedings of the 1996 IEEE International Symposium on Visual Lan-
guages, Boulder, CO, Washington, DC, 1996. IEEE Computer Society
Press.

[BN05] Dirk Beyer and Andreas Noack. Clustering software artifacts based
on frequent common changes. In Proceedings of 13th International
Workshop on Program Comprehension (IWPC 2005), St. Louis, MO,
pages 259–268, Washington, DC, 2005. IEEE Computer Society.

[BNDL04] Michael Balzer, Andreas Noack, Oliver Deussen, and Claus Lewerentz.
Software landscapes: Visualizing the structure of large software systems

References 171

(VisSym 2004, Konstanz, Germany). In Proceedings of Joint EURO-
GRAPHICS – IEEE TCVG Symposium on Visualization (2004), pages
261–266, 2004.

[BP84] Victor R. Basili and Barry T. Perricone. Software errors and complex-
ity: An empirical investigation. Communications of the ACM, 27(1):42–
52, 1984.

[BR96] Marc Brown and Roope Raisamo. JCAT: Collaborative active text-
books using Java. In Proceedings of CompuGraphics’96, Paris, France,
1996.

[Bra01] J. Branke. Dynamic graph drawing. In Drawing Graphs [KW01].
Springer Verlag, 2001.

[Bri02] Robert Bringhurst. The Elements of Typographic Style. Hartley &
Marks, Vancouver, 2002.

[Bro87] Frederick P. Brooks. No silver bullet: Essence and accidents of software
engineering. Computer, 20(4):10–19, April 1987.

[Bro88] Marc Brown. Exploring algorithms with Balsa-II. Computer, 21(5):14–
36, 1988.

[BS84] Marc Brown and Robert Sedgewick. A system for algorithm animation.
In Proceedings of ACM SIGGRAPH’84, Minneapolis, MN, pages 177–
186, New York, NY, 1984. ACM Press.

[BW00] Beatrix Braune and Reinhard Wilhelm. Focussing in algorithm expla-
nation. Transactions on Visualization and Computer Graphics, 6(1):1–
7, 2000.

[CB97] Rikk Carey and Gavin Bell. The Annotated VRML 2.0 Reference Man-
ual. Addison Wesley Longman, 1997.

[Che04] Chaomei Chen. Information Visualization — Beyond the Horizon.
(2nd edition), Springer Verlag, Berlin, Heidelberg, New York, 2004.

[Chia] Chisel Group. Creole Homepage. http://www.thechiselgroup.org/

creole.
[Chib] Chisel Group. SHriMP Homepage. http://www.thechiselgroup.org/

shrimp.
[Chi00] Ed H. Chi. A taxonomy of visualization techniques using the data

state reference model. In Proceedings of the Symposium on Information
Visualization (InfoVis’00), Salt Lake City, UT, Washington, DC, 2000.
IEEE Press.

[CHM98] James H. Cross, T. Dean Hendrix, and Saeed Maghsoodloo. The con-
trol structure diagram: An overview and initial evaluation. Empirical
Software Engineering, 3:131–158, 1998.

[CI90] Elliot J. Chikofsky and James H. Cross II. Reverse engineering and
design recovery: A taxonomy. IEEE Software, 7(1):13–18, 1990.

[CKN+03] Christian Collberg, Stephen Kobourov, Jasvir Nagra, Jacob Pitts, and
Kevin Wampler. A system for graph-based visualization of the evolu-
tion of software. In Proceedings of the ACM Symposium on Software
Visualization (SoftVis 2003), San Diego, CA, June 11–13, New York,
NY, 2003. ACM Press.

[CM01] Andy Cockburn and Bruce McKenzie. 3D or not 3D? evaluating the
effect of the third dimension in a document management system. In
Proceedings of CHI’2001 Conference on Human Factors in Computing
Systems (Seattle, Washington, March 31-April 6), pages 434–441, New
York, 2001. ACM Press.

172 References

[CM02] Andy Cockburn and Bruce McKenzie. Evaluating the effectiveness of
spatial memory in 2D and 3D physical and virtual environments. In
Proceedings of CHI’2002 Conference on Human Factors in Computing
Systems (Minneapolis, Minnesota, 20–25 April), pages 203–210, New
York, 2002. ACM Press.

[CMS99] Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman. Readings in
Information Visualization: Using Vision to Think. Morgan Kaufmann,
San Francisco, CA, 1999.

[CR93] Gruia-Catalin Cox and Kenneth C. Roman. A taxonomy of program
visualization systems. Computer, 26(12):11–24, 1993.

[Cro] James H. Cross. Grasp: Graphical representations of algorithms, struc-
tures, and processes. http://www.eng.auburn.edu/grasp.

[CW98] Reidar Conradi and Bernhard Westfechtel. Version models for software
configuration management. ACM Computing Surveys, 30(2):232–282,
1998.

[dBETT98] Giuseppe di Battista, Peter Eades, Roberto Tamassia, and Ioannis G.
Tollis. Graph Drawing: Algorithms for the Visualization of Graphs.
Prentice Hall, Upper Saddle River, NJ, 1998.

[DeM82] Tom DeMarco. Controlling Software Projects – Management, Measure-
ment and Estimation. Yourdon Press Computing Series, Upper Saddle
River, NJ, 1982.

[DF] Camil Demetrescu and Irene Finocchi. LEONARDO Webpage. http:
//www.dis.uniroma1.it/~demetres/Leonardo.

[DFS02] Camil Demetrescu, Irene Finocchi, and John T. Stasko. Specifying
algorithm visualizations: Interesting events or state mapping? In Pro-
ceedings of Dagstuhl Seminar on Software Visualization [Die02b], pages
16–30. 2002.

[DG02] Stephan Diehl and Carsten Görg. Graphs, they are changing – dy-
namic graph drawing for a sequence of graphs. In Proceedings of 10th
International Symposium on Graph Drawing, pages 23–30, Irvine, CA,
2002. Springer.

[Die02a] Stephan Diehl. Future perspectives. In Software visualization, pages
347–353. Springer, Berling, Heidelberg, New York, 2002.

[Die02b] Stephan Diehl, editor. Software Visualization, volume 2269 of LNCS
State-of-the-Art Survey. Springer Verlag, 2002.

[DK01] Stephan Diehl and Andreas Kerren. Levels of exploration. In Proceed-
ings of the 32nd Technical Symposium on Computer Science Education
(SIGCSE 2001), Charlotte, NC, pages 60–64, New York, NY, 2001.
ACM Press.

[DPS97] Richard A. DeMillo, Hsin Pan, and Eugene H. Spafford. Failure and
fault analysis for software debugging. In Proceedings of 21st Interna-
tional Computer Software and Applications Conference COMPSAC’97,
pages 515–521, Washington, DC, 1997. IEEE Computer Society.

[dPS99] Wim de Pauw and Gary Sevitsky. Visualizing reference patterns for
solving memory leaks in Java. In Proceedings of European Symposium
on Object-Oriented Programming ECOOP’99, pages 116–134. Springer,
Berlin, Heidelberg, New York, 1999.

[Dur] DuraSoft GmbH. RCE, VRCE, BDE .
http://wwwipd.ira.uka.de/~RCE.

References 173

[Ead84] Peter Eades. A heuristic for graph drawing. Congressus Numerantium,
42:149–160, 1984.

[EB02] Alexander A. Evstiougov-Babaev. Call graph and control flow graph
visualization for developers of embedded applications. In Proceedings of
Dagstuhl Seminar on Software Visualization [Die02b], pages 337–346.
2002.

[Ecl] Eclipse Foundation. Eclipse Homepage.
http://www.eclipse.org.

[EGK+04] Markus Eiglsperger, Carsten Gutwenger, Michael Kaufmann, Joachim
Kupke, Michael Jünger, Sebastian Leipert, Karsten Klein, Petra
Mutzel, and Martin Siebenhaller. Automatic layout of UML class di-
agrams in orthogonal style. Information Visualization, 3(3):189–208,
2004.

[EHK+03] Cesim Erten, Philipp J. Harding, Stephen G. Kobourov, Kevin
Wampler, and Gary V. Yee. GraphAEL: Graph Animations with
Evolving Layouts. In Proceedings of the 11th Symposium on Graph
Drawing (GD). Springer Verlag, 2003.

[Eic02] Holger Eichelberger. Evaluation-report on the layout facilities of
UML tools. Technical Report TR 298, Institut für Informatik,
Universität Würzburg, http://www2.informatik.uni-wuerzburg.de/
staff/eichelberger/reports/evalReport2002.pdf, 2002.

[Eic03] Holger Eichelberger. Nice class diagrams admit good design? In Pro-
ceedings of the ACM Symposium on Software Visualization (SoftVis
2003), San Diego, CA, June 11–13, pages 159–167, New York, NY,
2003. ACM Press.

[ES80] K. Anders Ericsson and Herbert A. Simon. Verbal reports as data.
Psychological Review, 87(3):215–251, 1980.

[ESJ92] Stephen G. Eick, Joseph L. Steffen, and Eric E. Sumner Jr. Seesoft
TM — a tool for visualizing line oriented software statistics. IEEE
Transactions on Software Engineering, 18(11):957–968, 1992.

[Fal02] Nils Faltin. Structure and constraints in interactive exploratory al-
gorithm learning. In Proceedings of Dagstuhl Seminar on Software
Visualization [Die02b], pages 213–226. 2002.

[FD04] Jon Froehlich and Paul Dourish. Unifying artifacts and activities in
a visual tool for distributed software development teams. In Proceed-
ings of the International Conference on Software Engineering ICSE’04,
pages 387–396, Washington, DC, 2004. IEEE Computer Society Press.

[FO00] Norman E. Fenton and Niclas Ohlsson. Quantitative analysis of faults
and failures in a complex software system. IEEE Transactions on Soft-
ware Engineering, 26(8):797–814, 2000.

[Fou] Apache Software Foundation. Byte code engineering library. http:

//jakarta.apache.org/bcel/.
[FvDFH96] James D. Foley, Andries van Dam, Steven K. Feiner, and John F.

Hughes. Computer Graphics: Principles and Practice. Addison-Wesley,
Reading, MA, 1996.

[GAN] GANIFA. Interactive online textbook on the subject of generating
finite automata. http://www.cs.uni-sb.de/~ganimal/GANIFA/.

[Gan00] Ganimal. Project homepage. http://www.cs.uni-sb.de/GANIMAL,
2000.

174 References

[GARG] University of Trier Graph Animation Research Group. DGD – dynamic
graph drawing. http://www.st.uni-trier.de/DGD.

[GBPD04] Carsten Görg, Peter Birke, Mathias Pohl, and Stephan Diehl. Dynamic
graph drawing of sequences of orthogonal and hierarchical graphs.
In Proceedings of 12th International Symposium on Graph Drawing,
September 29–October 2, New York City, USA, pages 228–238, Wash-
ington, DC, 2004. IEEE Computer Society Press.

[Ger94] Nahum D. Gershon. From perception to visualization. In L. Rosen-
blum, R.A. Earnshaw, J. Encarnacao, H. Hagen, A. Kaufman, S. Kli-
menko, G. Nielson, F. Post, and D. Thalmann, editors, Scientific Vi-
sualization: Advances and Challenges. Academic Press, 1994.

[GH03] John C. Grundy and John G. Hosking. SoftArch: Tool support for
integrated software architecture development. International Journal
on Software Engineering and Knowledge Engineering, 13(2):125–151,
2003.

[GHJ98] Harald Gall, Karin Hajek, and Mehdi Jazayeri. Detection of logical
coupling based on product release history. In Proceedings International
Conference on Software Maintenance (ICSM 98), Los Alamitos, CA,
pages 190–198, Washington, DC, 1998. IEEE Computer Society Press.

[GJK03a] Harald Gall, Mehdi Jazayeri, and Jacek Krajewski. CVS release his-
tory data for detecting logical couplings. In Proceedings of Interna-
tional Workshop on Principles of Software Evolution (IWPSE 2003),
Los Alamitos, CA, pages 13–23, Washington, DC, 2003. IEEE Com-
puter Society Press.

[GJK+03b] Carsten Gutwenger, Michael Jünger, Karsten Klein, Joachim Kupke,
Sebastian Leipert, and Petra Mutzel. A New Approach for Visualizing
UML Class Diagrams. In Proceedings of the ACM Symposium on Soft-
ware Visualization (SoftVis 2003), San Diego, CA, June 11–13, pages
179–188, New York, NY, 2003. ACM Press.

[GJR99] Harald Gall, Mehdi Jazayeri, and Claudio Riva. Visualizing software
release histories: The use of color and third dimension. In Proceedings
of the International Conference on Software Maintenance (ICSM’99),
Oxford, UK, pages 99–108, Washington, DC, 1999. IEEE Computer
Society.

[GKMS00] Todd L. Graves, Alan F. Karr, James S. Marron, and Harvey Siy.
Predicting fault incidence using software change history. IEEE Trans-
actions on Software Engineering, 26(7):653–661, 2000.

[Goo] GOOSE Homepage. http://esche.fzi.de/PROSTextern/software/

goose/index.html.
[GP92] Thomas R. G. Green and Marian Petre. When visual programs are

harder to read than textual programs. In G. C. van der Veer, M. J.
Tauber, S. Bagnarola, and M. Antavolits, editors, Proceedings of 6th
European Conference on Cognitive Ergonomics (ECCE-6), Rome, Italy,
1992.

[GP96] Thomas R. Green and Marian Petre. Usability analysis of visual pro-
gramming environments: a ’cognitive dimensions’ framework. Journal
of Visual Languages and Computing, 7(2):131–174, 1996.

[Gre] Green Hills Software Inc. Timemachine suite. http://www.ghs.com/

products/timemachine.html.

References 175

[GRR99] Martin Gogolla, Oliver Radfelder, and Mark Richters. Towards three-
dimensional animation of UML diagrams. In Proceedings of UML’99:
The Unified Modeling Language – Beyond the Standard, Second Inter-
national Conference, Fort Collins, CO, pages 489–502. Lecture Notes
in Computer Science, 1999.

[GS93a] David Garlan and Mary Shaw. An introduction to software architec-
ture. In V. Ambriola and G. Tortora, editors, Advances in Software
Engineering and Knowledge Engineering, Series on Software Engineer-
ing and Knowledge Engineering, volume 2, pages 1–39. World Scientific,
Singapore, 1993.

[GS93b] David Garlan and Mary Shaw. An introduction to software architec-
ture. In V. Ambriola and G. Tortora, editors, Advances in Software
Engineering and Knowledge Engineering, pages 1–39, Singapore, 1993.
World Scientific.

[Gur00] Yuri Gurevich. Sequential abstract-state machines capture sequen-
tial algorithms. ACM Transactions on Computational Logic (TOCL),
1(1):77–111, 2000.

[GvN47] Herman H. Goldstine and John von Neumann. Planning and coding
of problems for an electronic computing instrument, 1947. Part II,
volume I of a report prepared for the U.S. Army Ord. Dept., reprinted
in [Tau65].

[GYB04] Hamish Graham, Hong Yul Yang, and Rebecca Berrigan. A solar sys-
tem metaphor for 3D visualisation of object oriented software metrics.
In Proceedings of the Australasian Symposium on Information Visual-
isation, pages 53–59, Christchurch, 2004. ACM Press, New York, NY.

[GYK01] William G. Griswold, Jimmy J. Yuan, and Yoshikiyo Kato. Exploiting
the map metaphor in a tool for software evolution. In Proceedings of
the 21st International Conference on Software Engineering ICSE 2001,
pages 265–274, Washington, DC, 2001. IEEE Computer Society Press.

[Hai59] Lois M. Haibt. A program to draw multi-level flowcharts. In Proceed-
ings of the Western Joint Computer Conference, pages 131–137, San
Francisco, CA, 1959.

[HBE96] Christopher G. Healey, Kellogg S. Booth, and James T. Enns. High-
speed visual estimation using preattentive processing. ACM Transac-
tions on Computer-Human Interaction, 3(2):107–135, 1996.

[HDS02] Christopher D. Hundhausen, Sarah A. Douglas, and John T. Stasko. A
meta-study of algorithm visualization effectiveness. Journal of Visual
Languages and Computing, 13(3):259–290, 2002.

[HK01] Jiawei Han and Micheline Kamber, editors. Data Mining – Concepts
and Techniques. Morgan Kaufmann, San Francisco, CA, 2001.

[Hop74] F. Robert A. Hopgood. Computer animation used as a tool in teaching
computer science. In Proceedings of the IFIP Congress, pages 889–892,
Stockholm, Sweden, 1974.

[IBMa] IBM Coorporation, alphaWorks Technology. Jikes Bytecode Toolkit.
http://www.alphaworks.ibm.com/tech/jikesbt.

[IBMb] IBM Coorporation, alphaWorks Technology. JINSIGHT. http://www.
alphaworks.ibm.com/tech/jinsight.

[IBMc] IBM Coorporation, alphaWorks Technology. Web Services Navigator.
http://www.alphaworks.ibm.com/tech/wsnavigator.

176 References

[ID90] Alfred Inselberg and Bernhard Dimsdale. Parallel coordinates: A tool
for visualizing multi-dimensional geometry. In Proceedings of Visual-
ization ’90, San Francisco, CA, pages 361–378, Washington, DC, 1990.
IEEE Computer Society Press.

[IEE98] IEEE. IEEE Standard for a Software Quality Metrics Methodology.
IEEE Standard 1061. IEEE Computer Society press, Washington, DC,
1998.

[IEE00] IEEE. IEEE recommended practice for architecture description. IEEE
Standard 1471. IEEE Computer Society Press, Washington, DC, 2000.

[IW00] Pourang P. Irani and Colin Ware. Diagrams based on theories of struc-
tural perception. In Proceedings of Working Conference on Advanced
Visual Interfaces AVI, Palermo, Italy, pages 61–67, New York, NY,
2000. ACM Press.

[IW04] Pourang Irani and Colin Ware. The effect of a perceptual syntax on
the learnability of novel concepts. In Proceedings of Information Visu-
alisation, Eighth International Conference on (IV’04), pages 308–314,
Washington, DC, 2004. IEEE Computer Society.

[IWT01] Pourang P. Irani, Colin Ware, and Maureen Tingley. Using percep-
tual syntax to enhance semantic content in diagrams. IEEE Computer
Graphics & Applications, 21(5):76–84, 2001.

[Jac75] Michael Jackson. Principles of Program Design. Academic Press, 1975.
[JHS02] James A. Jones, Mary Jean Harrold, and John Stasko. Visualization

of test information to assist fault localization. In Proceedings of the
22rd International Conference on Software Engineering ICSE 2002,
Orlando, FL, pages 467–477, New York, NY, 2002. ACM Press.

[Joh] John T. Stasko. SAMBA Web page. http://www.cc.gatech.edu/gvu/
softviz/algoanim/samba.html.

[JOH04] James A. Jones, Alessandro Orso, and Mary Jean Harrold. Gam-
matella: Visualizing program-execution data for deployed software. In-
formation Visualization, 3(3):173–188, 2004.

[JPH+99] Christopher Johnson, Steven G. Parker, Charles Hansen, Gordon L.
Kindlmann, and Yarden Livnat. Interactive simulation and visualiza-
tion. Computer, 32(12):59–65, 1999.

[Jr.96] Frederick P. Brooks Jr. The computer scientist as toolsmith II. Com-
munications of the ACM, 39(3):61–68, 1996.

[JS91] Brian Johnson and Ben Shneiderman. Tree-maps: A space-filling ap-
proach to the visualization of hierarchical information structures. In
Proceedings of IEEE Visualization Conference, pages 284–291, San
Diego, CA, 1991.

[JSW05] Dierk Johannes, Raimund Seidel, and Reinhard Wilhelm. Algorithm
animation using shape analysis: Visualising abstract executions. In
Proceedings of ACM Symposium on Software Visualization (SOFTVIS
’05), St. Louis, MI, pages 17–26, New York, NY, 2005. ACM Press.

[KA98] Jeffrey L. Korn and Andrew W. Appel. Traversal-based visualization
of data structures. In IEEE Information Visualization ’98, 1998. Also
available at http://www.cs.princeton.edu/~jlk/viz.

[KB04] Cem Kaner and Walter P. Bond. Software engineering metrics: What
do they measure and how do we know? In Proceedings of 10th Inter-
national Software Metrics Symposium METRICS 2004, 2004.

References 177

[KC97] Hideki Koike and Hui-Chu Chu. VRCS: Integrating version control and
module management using interactive three-dimensional graphics. In
Proceedings of IEEE Symposium on Visual Languages VL’97, Capri,
Italy, pages 168–173, Washington, DC, 1997. IEEE Computer Society
Press.

[KDvV02] Henk Koning, Claire Dormann, and Hans van Vliet. Practical guide-
lines for readability of IT-architecture diagrams. In Proceedings of the
20th Annual International Conference on Documentation (SIGDOC
2002), pages 90–99, New York, NY, October 2002. ACM Press.

[Kei02] Daniel A. Keim. Information visualization and visual data mining.
IEEE Transactions on Visualization and Computer Graphics, 7(1):100–
107, 2002.

[Ker04] Andreas Kerren. Learning by generation in computer science educa-
tion. Journal of Computer Science and Technology (JCS&T), 4(2):84–
90, 2004.

[KM99] Claire Knight and Malcolm Munro. Comprehension within virtual envi-
ronment visualisations. In Proceedings of Seventh International Work-
shop on Program Comprehension (IWPC’99), pages 4–11, Pittsburgh,
PA, 1999.

[Kno66] Kenneth Knowlton. Bell telephone laboratories low-level linked list
language. 16-minute black and white film, 1966.

[Knu63] Donald E. Knuth. Computer-drawn flowcharts. Communications of
the ACM, 6(9):555–563, 1963.

[Knu84] Donald E. Knuth. Literate programming. The Computer Journal,
27(2):97–111, 1984.

[Knu92] Donald E. Knuth. Literate Programming. Center of the Study of Lan-
guage and Information – Lecture Notes, No. 27. CSLI Publications,
Stanford, CA, 1992.

[Kos02] Rainer Koschke. Software Visualization for Reverse Engineering. In
Proceedings of Dagstuhl Seminar on Software Visualization [Die02b],
pages 138–150. 2002.

[KS02] Andreas Kerren and John T. Stasko. Algorithm Animation. In Pro-
ceedings of Dagstuhl Seminar on Software Visualization [Die02b], pages
1–15. 2002.

[KST98] Kai Koskimies, Tarja Systä, and Jyrki Tuomi. Automated support for
modeling OO software. IEEE Software, 15(1):87–94, 1998.

[KST02] Ari Korhonen, Erkki Sutinen, and Jorma Tarhio. Understanding algo-
rithms by means of visualized path testing. In Proceedings of Dagstuhl
Seminar on Software Visualization [Die02b], pages 256–268. 2002.

[KvdWW01] Ernst Kleiberg, Huub van de Wetering, and Jarke J. Van Wijk. Botan-
ical visualization of huge hierarchies. In Proceedings of the IEEE Sym-
posium on Information Visualization 2001 (INFOVIS’01), pages 87–94,
Washington, DC, 2001. IEEE Computer Society.

[KW01] Michael Kaufmann and Dorothea Wagner, editors. Drawing Graphs –
Methods and Models. Springer, Berlin, Heidelberg, New York, 2001.

[Lab] Cigital Labs. VISTA tool. http://www.cigitallabs.com/research/

demos/vista/.
[Lan] Michele Lanza. CodeCrawler Homepage. http://www.iam.unibe.ch/

~scg/Research/CodeCrawler/index.html.

178 References

[Lan01] Michele Lanza. The evolution matrix: Recovering software evolution
using software visualization techniques. In Proceedings of International
Workshop on Principles of Software Evolution IWPSE 2001, pages 37–
42, 2001.

[LD01] Michele Lanza and Stephane Ducasse. A categorization of classes based
on the visualization of their internal structure: The class blueprint.
In Proceedings of the Conference on Object-Oriented Programming,
Systems, Languages, and Applications OOPSLA’2001, pages 300–311,
New York, NY, 2001. ACM Press.

[Leh80] Meir M. Lehman. Programs, life cycles and laws of software evolu-
tion. Proceedings of the IEEE (Special Issue on Software Engineering),
68(9):1060–1076, 1980.

[Lem92] Karen A. Lemone. Design of compilers: techniques of programming
language translation. CRC Press, Boca Raton, FL, 1992.

[LH92] Haim Levkowitz and Gabor T. Herman. Color scales for image data.
IEEE Computer Graphics and Applications., 12(1):72–80, 1992.

[LJ80] George Lakoff and Mark Johnson. Metaphors We Live By. University
of Chicago Press, Chicago, 1980.

[LS87] Jill H. Larkin and Herbert A. Simon. Why a diagram is (sometimes)
worth 10,000 words. Cognitive Science, 11(1):65–99, 1987.

[Mad94] Kim Halskov Madsen. A guide to metaphorical design. Communica-
tions of the ACM, 37(12):57–62, 1994.

[Mar] Adrian Marcus. SV3D Web page. http://www.sv3d.org.
[McC76] Thomas J. McCabe. A complexity measure. IEEE Transactions on

Software Engineering, 2(4):308–320, 1976.
[McC93] Deidre A. McConathy. Evaluation methods in visualization: Combating

the emperor’s new clothes phenomenon. SIGBIO Newsletter, 13(1):2–8,
1993.

[Meh02] Katharina Mehner. JaVis: A UML-based visualization and debugging
environment for concurrent Java programs. In Proceedings of Dagstuhl
Seminar on Software Visualization [Die02b], pages 163–175. 2002.

[MELS95] Kazuo Misue, Peter Eades, Wei Lai, and Kozo Sugiyama. Layout Ad-
justment and the Mental Map. Journal of Visual Languages and Com-
puting, 6(2):183–210, 1995.

[MFM03] A. Marcus, L. Feng, and J. I. Maletic. 3D representations for software
visualization. In Proceedings of the ACM Symposium on Software Vi-
sualization (SoftVis 2003), San Diego, CA, June 11–13, pages 27–36,
New York, NY, 2003. ACM Press.

[MHvS05] Paul McIntosh, Margaret Hamilton, and Ron G. van Schyndel. X3D-
UML: enabling advanced UML visualisation through X3D. In Pro-
ceedings of the Tenth International Conference on 3D Web Technology
(Web3D 2005), Bangor, UK, pages 135–142, New York, NY, 2005.
ACM Press.

[MLMD01] Jonathan I. Maletic, Jason Leigh, Andrian Marcus, and Greg Dun-
lap. Visualizing object-oriented software in virtual reality. In Pro-
ceedings of Ninth International Workshop on Program Comprehension
(IWPC’01), Toronto, Canada, pages 49–54, Washington, DC, 2001.
IEEE Computer Society Pres.

References 179

[Mos01] Yiannis N. Moschovakis. What is an algorithm? In Bjorn Engquist and
Wilfried Schmid, editors, Mathematics Unlimited – 2001 and Beyond,
pages 919–936. Springer, Berlin, Heidelberg, New York, 2001.

[MOTU93] Hausi A. Müller, Mehmet A. Orgun, Scott R. Tilley, and James S. Uhl.
A reverse engineering approach to subsystem structure identification.
Journal of Software Maintenance: Research and Practice, 5(4):181–204,
December 1993.

[MP95] Karl-Heinrich Moeller and Daniel J. Paulish. An empirical investiga-
tion of software fault distribution. In Norman Fenton, Robin Whitty,
and Yoshinori Lizuka, editors, Software Quality Assurance and Mea-
surement: Worldwide Perspective, pages 242–253. International Thom-
son Computer Press, London, 1995.

[MRC91] Jock D. Mackinlay, George G. Robertson, and Stuart K. Card. The per-
spective wall: detail and context smoothly integrated. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems
CHI’91, pages 173–176, New York, NY, USA, 1991. ACM Press.

[MvWvL99] Jurriaan D. Mulder, Jarke J. van Wijk, and Robert van Liere. A survey
of computational steering environments. Future Generation Computer
Systems, 15(1):119–129, 1999.

[Mye79] Glenford J. Myers. The Art of Software Testing. Wiley, Chichester,
1979.

[Mye90] Brad A. Myers. Taxonomies of visual programming and program vi-
sualisation. Journal of Visual Languages and Computing, 1(1):97–123,
1990.

[NNH99] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of
Program Analysis. Springer, Berlin, Heidelberg, New York, 1999.

[NRA+03] Thomas L. Naps, Guido Rößling, Vicki Almstrum, Wanda Dann,
Rudolf Fleischer, Chris Hundhausen, Ari Korhonen, Lauri Malmi,
Myles McNally, Susan Rodger, and J. Ángel Velázquez-Iturbide. Ex-
ploring the role of visualization and engagement in computer science
education. SIGCSE Bulletin, 35(2):131–152, 2003.

[NS73] Isaac Nassi and Ben Shneiderman. Flowchart techniques for structured
programming. SIGPLAN Notices, 8(8):12–26, August 1973.

[Opp80] Derek C. Oppen. Prettyprinting. ACM Transactions on Programming
Languages, 2(4):465–483, 1980.

[Pai90] Allan Paivio. Mental Representations: A Dual Coding Approach. Ox-
ford University Press, New York, 1990.

[Par72] David L. Parnas. On the criteria to be used in decomposing systems
into modules. Communications of the ACM, 15(12):1053–1058, 1972.

[PBG03] Thomas Panas, Rebecca Berrigan, and John Grundy. A 3D metaphor
for software production visualization. In Proceedings of Seventh Inter-
national Conference on Information Visualization (IV’03), pages 314–
319, 2003.

[PBS93] Blaine A. Price, Ronald Baecker, and Ian Small. A principled taxonomy
of software visualization. Journal of Visual Languages and Computing,
4(3):211–266, 1993.

[PCJ96] Helen C. Purchase, Robert F. Cohen, and Murray James. Validat-
ing graph drawing aesthetics. In Franz J. Brandenburg, editor, Graph

180 References

Drawing (Proceedings of GD ’95), volume 1027 of Lecture Notes Com-
puter Science, pages 435–446, Berling, Heidelberg, New York, 1996.
Springer.

[PJM+02] Wim De Pauw, Erik Jensen, Nick Mitchell, Gary Sevitsky, John Vlis-
sides, and Jeaha Yang. Visualizing the execution of Java programs. In
Proceedings of Dagstuhl Seminar on Software Visualization [Die02b],
pages 151–162. 2002.

[PKM06] Wim De Pauw, Sophia Krasikov, and John F. Morar. Execution pat-
terns for visualizing web services. In Proceedings of the ACM Sympo-
sium on Software Visualization (SoftVis 2006), Brighton, UK, 2006.

[PLL04] Thomas Panas, Jonas Lundberg, and Welf Löwe. Reuse in reverse
engineering. In Proceedings of the 12th International Workshop On
Program Comprehension, Bari, Italy, pages 52–61, Washington, DC,
2004. IEEE Computer Society Press.

[PLRW92] Peter G. Polson, Clayton Lewis, John Rieman, and Cathleen Wharton.
Cognitive walkthroughs: A method for theory-based evaluation of user
interfaces. International Journal of Man-Machine Studies, 36(5):741–
773, 1992.

[PLVW98] Wim De Pauw, David Lorenz, John Vlissides, and Mark Wegman. Ex-
ecution patterns in object-oriented visualization. In Proceedings of
the Fourth Conference on Object-Oriented Technologies and Systems
(COOTS), pages 219–234, Santa Fe, NM, 1998.

[PNB04] Alex Potanin, James Noble, and Robert Biddle. Checking ownership
and confinement. Concurrency and Computation: Practice and Expe-
rience, 16(7):671–687, 2004.

[PPV00] Dewayne E. Perry, Adam A. Porter, and Lawrence G. Votta. Empiri-
cal studies of software engineering: A roadmap. In Proceedings of the
22nd International Conference on Software Engineering ICSE’00, Fu-
ture of SE Track, Limerick, Ireland, pages 345–355, New York, NY,
2000. ACM Press.

[PR94] Stephen Palmer and Irvin Rock. Rethinking perceptual organization:
The role of uniform connectedness. Psychonomic Bulletin and Review,
1(1):29–55, 1994.

[Pro02] Christian Probst. A Demand-Driven Solver for Constraint-Based Con-
trol Flow Analysis. PhD thesis, University of Saarland, Saarbrücken,
Germany, 2002.

[PRW03] Michael J. Pacione, Marc Roper, and Murray Wood. A comparative
evaluation of dynamic visualization tools. In Proceedings of the 10th
Working Conference on Reverse Engineering (WCRE’03), pages 1095–
1350, Washington, DC, 2003. IEEE Computer Society Press.

[Pur97] Helen C. Purchase. Which aesthetic has the greatest effect on human
understanding? In GD ’97: Proceedings of the 5th International Sympo-
sium on Graph Drawing, pages 248–261, Berlin, Heidelberg, New York,
1997. Springer.

[RC94] Ramana Rao and Stuart K. Card. The table lens: Merging graphical
and symbolic representations in an interactive focus + context visual-
ization for tabular information. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems CHI’94, Boston, MA,
pages 318–322, New York, NY, 1994. ACM Press.

References 181

[RG00] Oliver Radfelder and Martin Gogolla. On better understanding UML
diagrams through three-dimensional visualization and animation. In
Proceedings of Advanced Visual Interfaces (AVI’2000), Palermo, Italy,
pages 292–295, New York, NY, 2000. ACM Press.

[RMC91] George G. Robertson, Jock D. Mackinlay, and Stuart K. Card. Cone
trees: Animated 3D visualizations of hierarchical information. In Pro-
ceedings of ACM Computer-Human Interaction ’91 Conference on Hu-
man Factors in Computing Systems, pages 189–194, New York, 1991.
ACM Press.

[ROC97] Ronald A. Rensink, J. Kevin O’Regan, and James J. Clark. To see or
not to see: The need for attention to perceive changes in the senses.
Psychological Science, 8(5):368–373, 1997.

[San96] Georg Sander. Visualization Techniques for Compiler Construction.
Dissertation (in german), University of Saarland, Saarbrücken, Ger-
many, 1996.

[Sca89] David A. Scanlan. Structured flowcharts outperform pseudocode: An
experimental comparison. IEEE Software, 6(5):28–36, 1989.

[Sco58] Art E. Scott. Automatic preparation of flow chart listings. Journal of
the ACM. International Business Machines Corporation, 5(1):57–66,
January 1958.

[SDBP98] John T. Stasko, John Domingue, Marc H. Brown, and Blaine A. Price.
Software Visualization – Programming as a Multimedia Experience.
MIT Press, 1998.

[She67] Roger N. Shepard. Recognition memory for words, sentences, and pic-
tures. Journal of Verbal Learning and Behavior, 6:156–163, 1967.

[Shn96] Ben Shneiderman. The eyes have it: A task by data type taxonomy for
information visualizations. In Proceedings of 1996 IEEE Conference
on Visual Languages, Boulder, CO, pages 336–343, Washington, DC,
1996. IEEE Computer Society Press.

[SK93] John Stasko and Eileen Kraemer. A methodology for building
application-specific visualizations of parallel programs. Journal of Par-
allel and Distributed Computing, 18(2):258–264, 1993.

[SKM01] Tarja Systä, Kai Koskimies, and Hausi Müller. Shimba – an environ-
ment for reverse engineering Java software systems. Software – Practice
and Experience, 31(4):371–394, 2001.

[SMC74] Wayne Stevens, Glenford Myers, and Larry Constantine. Structured
design. IBM Systems Journal, 13(2):115–139, 1974.

[SMMH77] Ben Shneiderman, Richard Mayer, Don McKay, and Peter Heller. Ex-
perimental investigations of the utility of detailed flowcharts in pro-
gramming. Communications of the ACM, 20(6):373–381, 1977.

[Sof] Software-Tomography GmbH. Sotograph homepage. http://www.

software-tomography.com/html/sotograph.htm.
[Sol] Solomon Duskis et. al. JSAMBA Web page. http://www.cc.gatech.

edu/gvu/softviz/algoanim/jsamba.
[Spe68] Roger W. Sperry. Hemisphere disconnection and unity in conscious

awareness. American Psychologist, 23(10):723–733, 1968.
[Spe01] Robert Spence. Information Visualization. Pearson Education, Harlow,

2001.

182 References

[SRW96] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Solving shape-
analysis problems in languages with destructive updating. In Proceed-
ings of the 23rd ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, St. Petersburg Beach, FL, pages 1–50, New
York, NY, 1996. ACM Press.

[SRW99] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape-
analysis via 3-valued logic. In Proceedings of the 26th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages, San
Antonio, TX, pages 105–118, New York, NY, 1999. ACM Press.

[Sta] John Stasko. Polka. http://www.cc.gatech.edu/gvu/softviz/

parviz/polka.html.
[Sta73] Lionel Standing. Learning 10,000 pictures. Quartertly Journal of Ex-

perimental Psychology, 25(2):207–222, 1973.
[Sta90a] John T. Stasko. TANGO: A framework and system for algorithm ani-

mation. Computer, 23(9):27–39, 1990.
[Sta90b] John T. Stasko. The path-transition paradigm: A practical method-

ology for adding animation to program interfaces. Journal of Visual
Languages and Computing, 1(3):213–236, 1990.

[Sta97] John Stasko. Using student-built algorithm animations as learning
aids. In Proceedings of the 1998 ACM SIGCSE Conference, San
Jose, CA, 1997. Extended version including SAMBA documentation
available as Technical Report GIT-GVU-96-19 from Georgia Institute
of Technology at ftp://ftp.cc.gatech.edu/pub/gvu/tech-reports/
96-19.ps.Z.

[Str] Strata Inc. WinCVS homepage. http://www.cvsgui.org.
[STT81] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for

visual understanding of hierarchical systems. IEEE Transactions on
Systems, Man and Cybernetics, SMC-11(2):109–125, 1981.

[Sun90] Vaidy Sunderam. PVM: A framework for parallel distributed comput-
ing. Concurrency: Practice & Experience, 2(4):315–339, 1990.

[SW01] Ben Shneiderman and Martin Wattenberg. Ordered treemap layouts.
In Proceedings of IEEE Symposium on Information Visualization IN-
FOVIS’01, pages 73–78, Washington, DC, 2001. IEEE Computer So-
ciety Press.

[SW05] Dabo Sun and Kenny Wong. On evaluating the layout of UML class
diagrams for program comprehension. In Proceedings of the 13th In-
ternational Workshop on Program Comprehension IWPC 2005, pages
317–326, Washington, DC, 2005. IEEE Computer Society Press.

[SZ00] John Stasko and Eugene Zhang. Focus+context display and navigation
techniques for enhancing radial, space-filling hierarchy visualizations.
In Proceedings of the Symposium on Information Visualization (Info-
Vis’00), Salt Lake City, UT, pages 57–65, Washington, DC, 2000. IEEE
Computer Society Press.

[Tar] Tarantula. http://www.cc.gatech.edu/aristotle/Tools/

tarantula.
[Tau65] Abraham H. Taub, editor. John von Neumann: Collected Works, vol-

ume V: Design of Computers, Theory of Automata and Numerical
Analysis. Pergamon, New York, NY, 1965.

[Tho81] Carsten Thomassen. Kuratowski’s theorem. Journal of Graph Theory,
5:225–241, 1981.

References 183

[Tic98] Walter F. Tichy. Should computer scientists experiment more? IEEE
Computer, 31(5):32–40, May 1998.

[TLPH95] Walter F. Tichy, Paul Lukowicz, Lutz Prechelt, and Ernst A. Heinz.
Experimental evaluation in computer science: A quantitative study.
Journal of Systems and Software, 28(1):9–18, January 1995.

[TM02] Christopher M. B. Taylor and Malcolm Munro. Revision towers. In
Proceedings of the Workshop on Visualizing Software for Understand-
ing and Analysis VISSSOFT 2002, Paris, France, June, pages 43–50,
Washington, DC, 2002. IEEE Computer Society Press.

[TS96] Scott R. Tilley and Dennis B. Smith. Coming attractions in program
understanding. In Alan W. Brown, editor, Component-Based Software
Engineering: Selected Papers from the Software Engineering Institute.
Wiley, New York, NY, 1996.

[Tur36] Alan Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Soci-
ety, 2(42):230–265, 1936.

[Viz] Vizz3D. http://vizz3d.sourceforge.net/.
[VT04] Brian C. Verrelli and Sarah A. Tishkoff. Signatures of selection and

gene conversion associated with human color vision variation. Ameri-
can Journal of Human Genetics, 75(4):363–375, 2004.

[VTvW05] Lucian Voinea, Alex Telea, and Jarke J. van Wijk. CVSscan: Visualiza-
tion of code evolution. In Proceedings of ACM Symposium on Software
Visualization (SOFTVIS ’05), St. Louis, MI, pages 47–56, New York,
NY, 2005. ACM Press.

[VW93] Paul F. Velleman and Leland Wilkinson. Nominal, ordinal, inter-
val, and ratio typologies are misleading. The American Statistician,
47(1):65–72, February 1993.

[vWvdW99] Jarke J. van Wijk and Huub van de Wetering. Cushion treemaps: Vi-
sualization of hierarchical information. In Proceedings of IEEE Sym-
posium on Information Visualization INFOVIS’99, pages 73–78, San
Francisco, 1999.

[W3C] World Wide Web Consortium W3C. Web Services Architecture Spec-
ification. http://www.w3.org/2002/ws.

[War00] Colin Ware. Information Visualization — Perception for Design. Mor-
gan Kaufmann, San Francisco, CA, 2000.

[Wat93] Alan Watt. 3D Computer Graphics. Addison-Wesley, Reading, MA,
1993.

[Wer23] Max Wertheimer. Untersuchungen zur Lehr von der Gestalt (in Ger-
man). Psychologische Forschung, 4:301–350, 1923.

[WF94] Colin Ware and Glenn Franck. Viewing a graph in a virtual reality
display is three times as good as a 2D diagram. In Proceedings of the
IEEE Symposium on Visual Languages (VL’94), St. Louis, MO, pages
182–183, Washington, DC, 1994. IEEE Computer Society Press.

[WM95] Reinhard Wilhelm and Dieter Maurer. Compiler Design. Addison
Wesley Longman, Redwood City, CA, 1995.

[WMS02] Reinhard Wilhelm, Tomasz Müldner, and Raimund Seidel. Algorithm
explanation: Visualizing abstract states and invariants. In Proceedings
of Dagstuhl Seminar on Software Visualization [Die02b], pages 381–
394. 2002.

184 References

[Wol98] Jeremy M. Wolfe. Visual memory: What do you know about what you
saw? Current Biology, 8:303–304, 1998.

[WPCM02] Colin Ware, Helen Purchase, Linda Colpoys, and Matthew McGill.
Cognitive measurements of graph aesthetics. Information Visualiza-
tion, 1(2):103–110, 2002.

[WRLP94] Cathleen Wharton, John Rieman, Clayton Lewis, and Peter Polson.
The cognitive walkthrough: A practitioner’s guide. In Jakob Nielsen
and Robert L. Mack, editors, Usability Inspection Methods, pages 105–
139. Wiley, New York, NY, 1994.

[XRa] XRadar. http://xradar.sourceforge.net/.
[Xsl] X-slice. http://xsuds.argreenhouse.com/html-man/xslice.html.
[ZB89] Horst Zuse and Peter Bollmann. Software metrics – using measure-

ment theory to describe the properties and scales of static software
complexity metrics. SIGPLAN Notices, 24(8):23–33, 1989.

[ZDZ03] Thomas Zimmermann, Stephan Diehl, and Andreas Zeller. How history
justifies system architecture (or not). In Proceedings of the 6th Interna-
tional Workshop on Principles of Software Evolution IWPSE Septem-
ber 2003, Helsinki, Finland, pages 73–83, Washington, DC, 2003. IEEE
Computer Society Press.

[Zel01] Andreas Zeller. Datenstrukturen visualisieren und animieren mit DDD
(in German). Informatik – Forschung und Entwicklung, 16(2):65–75,
2001.

[Zha03] Kang Zhang, editor. Software visualization – From theory to practice,
volume 734 of International Series in Engineering and Computer Sci-
ence, volume 134. Springer, Berlin, Heidelberg, New York, 2003.

[ZL96] Andreas Zeller and Dorothea Lütkehaus. DDD – A free graphical front-
end for UNIX debuggers. ACM SIGPLAN Notices, 31(1):22–27, 1996.

[ZWDZ05] Thomas Zimmermann, Peter Weißgerber, Stephan Diehl, and Andreas
Zeller. Mining version histories to guide software changes. IEEE Trans-
actions on Software Engineering, 31(6):429–445, 2005.

[ZZ02] Thomas Zimmermann and Andreas Zeller. Visualizing memory graphs.
In Proceedings of Dagstuhl Seminar on Software Visualization [Die02b],
pages 191–204. 2002.

Index

3D visualization 22, 69, 91, 130

abstract execution 96
accumulation 78, 79
aesthetics 26, 61, 91, 154
aggregation 56, 65
aiSee 51
algorithm 83
algorithm animation 153
algorithm explanation 96, 162
animation 21, 78, 82, 135
Aspect Browser 129
aspects 129
association rule 140
Augur 129

backface culling 22
Balsa 86
blind spot 16
brightness 17

CAT 86
causality 19
change blindness 16
class blueprint 61
class diagram 56, 69
clipping 24
CodeCrawler 61
cognitive dimensions 148
cognitive walkthrough 148
cohesion 54
color 17, 20, 21
color blindness 20
color coding 20, 62, 115, 127, 137

color scales 20
color vision 16
cone tree 29
configuration 133
configuration management 132
context 25, 162
control-dependency graph 51
control-flow analysis 47
control-flow graph 38, 44, 47, 48, 51,

66, 134
control-structure diagram 45
coupling 54, 135
coverage 99
Creole 65, 149
culling 24
CVSScan 129

data acquisition 75
data-dependency graph 51
data-flow analysis 48
data mining 126, 139
DDD 105
debugging 104, 105
diagrammatic representations 22, 36
dicing 113
distortion 25

education 98
EPOSee 141
EposPix 139
evolution matrix 131
evolutionary biology 126
evolutionary coupling 136
execution slice 113, 115

186 Index

factors in quantitative evaluation 146,
152

flow pattern 119
flowchart 38
focus 20, 25, 93, 95, 162
focus + context 25, 162
focusing 162
force-directed layout 27, 134, 136
Fujaba 61

Gammatella 115
geon diagram 58, 154
Gestalt theory 17, 147
GEVOL 134
GOOSE 64
GoVisual 63
graph 25
graph animation 134
graph drawing 26, 51, 52
graph drawing aesthetics 26
graphical primitives 21
graphics pipeline 22
GRASP 45

hierarchical layout 27, 61
hue 17
human eye 16

Imsovision 70
information pyramid 29
information slices 29
information visualization 3, 15, 24
inheritance 56
instrumentation 76, 81
intelligence amplification 1
interaction 24
interesting events 86, 93, 94
invariant 93
invasiveness 76, 94

Jackson diagram 36, 51
JaVis 82
Jinsight 110

layout 38, 42
LEONARDO 86, 94
light 17
lighting 24

memory graph 108

memory slice 109, 111
mental image 3
mental map 28
metaphor 2, 30, 55, 70
motion 19, 20

Nassi–Shneiderman diagram 43

orthogonal layout 28, 61

parallel coordinates 142
pattern perception 17
perception 15, 146
perspective wall 25
pixel 24
pixelmap 137
planar graph 26, 44
POLKA 86, 94
polygon culling 24
polygon mesh 22
preattentive perception 18
pretty printing 33
projection 24
pulsar 131
PVM 86

qualitative evaluation 146
quantitative evaluation 145

rasterization 24
reference pattern 110
releases of software package 133
rendering pipeline 22
reverse engineering 12, 61
revision tower 130
RIGI 63, 82

SAMBA 86, 101, 122
scales of measurement 59
SCED 82
SeeSoft 8, 127
SeeSys 128
sequence diagram 56, 69, 82
shading 24
shape graph 96
SHIMBA 82
SHriMP 64, 65
smooth animation 86
SoftArch 81
software archive 132

Index 187

software evolution 8, 125
software metrics 58, 126
software visualization tools

Aspect Browser 129
Augur 129
Balsa 86
CAT 86
CodeCrawler 61
Creole 65, 149
CVSScan 129
DDD 105
EPOSee 141
EposPix 139
Fujaba 61
Gammatella 115
GEVOL 134
GOOSE 64
GoVisual 63
GRASP 45
Imsovision 70
JaVis 82
Jinsight 110
LEONARDO 86, 94
POLKA 86, 94
PVM 86
revision tower 130
RIGI 63, 82
SAMBA 86, 101, 122
SCED 82
SeeSoft 8, 127
SeeSys 128
SHIMBA 82
SHriMP 64, 65
SoftArch 81
Sotograph 64
StackAnalyzer 7, 51
SV3D 130
TANGO 8, 86, 87
Tango 85
Tarantula 115, 154
VISTA 51
Vizz3D 71
VizzAnalyzer 64
Web Services Navigator 117
X-Slice 113
XRadar 59

software visualization, definitions of 3

Sotograph 64
space-filling visualization 127, 130
StackAnalyzer 7, 51
state mapping 93
static analysis 47
static slice 113
structogram 43
Sunburst 29
support graph 136
SV3D 130

Tablelens 25
TANGO 8, 86, 87
Tango 85
Tarantula 115, 154
task-oriented evaluation 148
taxonomy 10
test cases 114
texture mapping 24
tree 26, 28
treemap 29
typography 22, 34

UML 56, 69, 147, 148, 154

version 132
virtual machine 76, 78
VISTA 51
visual cues 22
visual data mining 126, 139
visual debugging 148, 154, 157, 158
visual memory 16
visual metaphor 30, 70
visual model 84, 107
visual programming 6, 154
visualization pipeline 12, 96
visualization, definitions of 1
Vizz3D 71
VizzAnalyzer 64

wagon wheel problem 19
Web Services Navigator 117
white dwarf 132

X-Slice 113
XRadar 59

Z-buffer 24

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

